Evaluate
y-1
Expand
y-1
Graph
Quiz
Polynomial
5 problems similar to:
\frac { y + \frac { 1 } { y - 2 } } { 1 + \frac { 1 } { y - 2 } }
Share
Copied to clipboard
\frac{\frac{y\left(y-2\right)}{y-2}+\frac{1}{y-2}}{1+\frac{1}{y-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y-2}{y-2}.
\frac{\frac{y\left(y-2\right)+1}{y-2}}{1+\frac{1}{y-2}}
Since \frac{y\left(y-2\right)}{y-2} and \frac{1}{y-2} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{2}-2y+1}{y-2}}{1+\frac{1}{y-2}}
Do the multiplications in y\left(y-2\right)+1.
\frac{\frac{y^{2}-2y+1}{y-2}}{\frac{y-2}{y-2}+\frac{1}{y-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y-2}{y-2}.
\frac{\frac{y^{2}-2y+1}{y-2}}{\frac{y-2+1}{y-2}}
Since \frac{y-2}{y-2} and \frac{1}{y-2} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{2}-2y+1}{y-2}}{\frac{y-1}{y-2}}
Combine like terms in y-2+1.
\frac{\left(y^{2}-2y+1\right)\left(y-2\right)}{\left(y-2\right)\left(y-1\right)}
Divide \frac{y^{2}-2y+1}{y-2} by \frac{y-1}{y-2} by multiplying \frac{y^{2}-2y+1}{y-2} by the reciprocal of \frac{y-1}{y-2}.
\frac{y^{2}-2y+1}{y-1}
Cancel out y-2 in both numerator and denominator.
\frac{\left(y-1\right)^{2}}{y-1}
Factor the expressions that are not already factored.
y-1
Cancel out y-1 in both numerator and denominator.
\frac{\frac{y\left(y-2\right)}{y-2}+\frac{1}{y-2}}{1+\frac{1}{y-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y-2}{y-2}.
\frac{\frac{y\left(y-2\right)+1}{y-2}}{1+\frac{1}{y-2}}
Since \frac{y\left(y-2\right)}{y-2} and \frac{1}{y-2} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{2}-2y+1}{y-2}}{1+\frac{1}{y-2}}
Do the multiplications in y\left(y-2\right)+1.
\frac{\frac{y^{2}-2y+1}{y-2}}{\frac{y-2}{y-2}+\frac{1}{y-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y-2}{y-2}.
\frac{\frac{y^{2}-2y+1}{y-2}}{\frac{y-2+1}{y-2}}
Since \frac{y-2}{y-2} and \frac{1}{y-2} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{2}-2y+1}{y-2}}{\frac{y-1}{y-2}}
Combine like terms in y-2+1.
\frac{\left(y^{2}-2y+1\right)\left(y-2\right)}{\left(y-2\right)\left(y-1\right)}
Divide \frac{y^{2}-2y+1}{y-2} by \frac{y-1}{y-2} by multiplying \frac{y^{2}-2y+1}{y-2} by the reciprocal of \frac{y-1}{y-2}.
\frac{y^{2}-2y+1}{y-1}
Cancel out y-2 in both numerator and denominator.
\frac{\left(y-1\right)^{2}}{y-1}
Factor the expressions that are not already factored.
y-1
Cancel out y-1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}