Solve for x_1
x_{1}=x_{2}
x_{2}\neq -2
Solve for x_2
x_{2}=x_{1}
x_{1}\neq -2
Share
Copied to clipboard
\left(x_{2}+2\right)x_{1}=\left(x_{1}+2\right)x_{2}
Variable x_{1} cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by \left(x_{1}+2\right)\left(x_{2}+2\right), the least common multiple of x_{1}+2,x_{2}+2.
x_{2}x_{1}+2x_{1}=\left(x_{1}+2\right)x_{2}
Use the distributive property to multiply x_{2}+2 by x_{1}.
x_{2}x_{1}+2x_{1}=x_{1}x_{2}+2x_{2}
Use the distributive property to multiply x_{1}+2 by x_{2}.
x_{2}x_{1}+2x_{1}-x_{1}x_{2}=2x_{2}
Subtract x_{1}x_{2} from both sides.
2x_{1}=2x_{2}
Combine x_{2}x_{1} and -x_{1}x_{2} to get 0.
x_{1}=x_{2}
Cancel out 2 on both sides.
x_{1}=x_{2}\text{, }x_{1}\neq -2
Variable x_{1} cannot be equal to -2.
\left(x_{2}+2\right)x_{1}=\left(x_{1}+2\right)x_{2}
Variable x_{2} cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by \left(x_{1}+2\right)\left(x_{2}+2\right), the least common multiple of x_{1}+2,x_{2}+2.
x_{2}x_{1}+2x_{1}=\left(x_{1}+2\right)x_{2}
Use the distributive property to multiply x_{2}+2 by x_{1}.
x_{2}x_{1}+2x_{1}=x_{1}x_{2}+2x_{2}
Use the distributive property to multiply x_{1}+2 by x_{2}.
x_{2}x_{1}+2x_{1}-x_{1}x_{2}=2x_{2}
Subtract x_{1}x_{2} from both sides.
2x_{1}=2x_{2}
Combine x_{2}x_{1} and -x_{1}x_{2} to get 0.
2x_{2}=2x_{1}
Swap sides so that all variable terms are on the left hand side.
x_{2}=x_{1}
Cancel out 2 on both sides.
x_{2}=x_{1}\text{, }x_{2}\neq -2
Variable x_{2} cannot be equal to -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}