Solve for b
b=-\frac{x-y+z}{x\left(2-x\right)}
x\neq 2\text{ and }x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{1+4b+4b^{2}+4bz-4by}+2b+1}{2b}\text{, }&\left(b\neq \frac{1}{2}\text{ and }arg(1-2b)<\pi \text{ and }b\neq 0\text{ and }b\neq -\frac{1}{2}\text{ and }arg(2b+1)<\pi \right)\text{ or }\left(b\neq \frac{1}{2}\text{ and }arg(1-2b)<\pi \text{ and }b\neq 0\text{ and }y\neq z\right)\text{ or }\left(y\neq z+2\text{ and }b\neq 0\text{ and }b\neq -\frac{1}{2}\text{ and }arg(2b+1)<\pi \right)\text{ or }\left(y\neq z+2\text{ and }b\neq 0\text{ and }y\neq z\right)\\x=-\frac{\sqrt{1+4b+4b^{2}+4bz-4by}-2b-1}{2b}\text{, }&\left(arg(2b+1)\geq \pi \text{ and }arg(1-2b)\geq \pi \right)\text{ or }\left(arg(1-2b)\geq \pi \text{ and }b\neq \frac{1}{2}\text{ and }y\neq z\right)\text{ or }\left(arg(2b+1)\geq \pi \text{ and }y\neq z+2\text{ and }b\neq -\frac{1}{2}\right)\text{ or }\left(b\neq 0\text{ and }y\neq z+2\text{ and }y\neq z\right)\\x=y-z\text{, }&y\neq z+2\text{ and }y\neq z\text{ and }b=0\end{matrix}\right.
Share
Copied to clipboard
x-y+z=bx\left(x-2\right)
Multiply both sides of the equation by x\left(x-2\right).
x-y+z=bx^{2}-2bx
Use the distributive property to multiply bx by x-2.
bx^{2}-2bx=x-y+z
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}-2x\right)b=x-y+z
Combine all terms containing b.
\frac{\left(x^{2}-2x\right)b}{x^{2}-2x}=\frac{x-y+z}{x^{2}-2x}
Divide both sides by x^{2}-2x.
b=\frac{x-y+z}{x^{2}-2x}
Dividing by x^{2}-2x undoes the multiplication by x^{2}-2x.
b=\frac{x-y+z}{x\left(x-2\right)}
Divide x-y+z by x^{2}-2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}