Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-8}{x^{2}-6x-2\left(x-8\right)}\left(x\left(x-3\right)+\frac{2\left(x-6\right)}{x+3}\right)
Use the distributive property to multiply x by x-6.
\frac{x-8}{x^{2}-6x-2x+16}\left(x\left(x-3\right)+\frac{2\left(x-6\right)}{x+3}\right)
Use the distributive property to multiply -2 by x-8.
\frac{x-8}{x^{2}-8x+16}\left(x\left(x-3\right)+\frac{2\left(x-6\right)}{x+3}\right)
Combine -6x and -2x to get -8x.
\frac{x-8}{x^{2}-8x+16}\left(x^{2}-3x+\frac{2\left(x-6\right)}{x+3}\right)
Use the distributive property to multiply x by x-3.
\frac{x-8}{x^{2}-8x+16}\left(x^{2}-3x+\frac{2x-12}{x+3}\right)
Use the distributive property to multiply 2 by x-6.
\frac{x-8}{x^{2}-8x+16}\left(\frac{\left(x^{2}-3x\right)\left(x+3\right)}{x+3}+\frac{2x-12}{x+3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}-3x times \frac{x+3}{x+3}.
\frac{x-8}{x^{2}-8x+16}\times \frac{\left(x^{2}-3x\right)\left(x+3\right)+2x-12}{x+3}
Since \frac{\left(x^{2}-3x\right)\left(x+3\right)}{x+3} and \frac{2x-12}{x+3} have the same denominator, add them by adding their numerators.
\frac{x-8}{x^{2}-8x+16}\times \frac{x^{3}+3x^{2}-3x^{2}-9x+2x-12}{x+3}
Do the multiplications in \left(x^{2}-3x\right)\left(x+3\right)+2x-12.
\frac{x-8}{x^{2}-8x+16}\times \frac{x^{3}-7x-12}{x+3}
Combine like terms in x^{3}+3x^{2}-3x^{2}-9x+2x-12.
\frac{\left(x-8\right)\left(x^{3}-7x-12\right)}{\left(x^{2}-8x+16\right)\left(x+3\right)}
Multiply \frac{x-8}{x^{2}-8x+16} times \frac{x^{3}-7x-12}{x+3} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{4}-7x^{2}-12x-8x^{3}+56x+96}{\left(x^{2}-8x+16\right)\left(x+3\right)}
Apply the distributive property by multiplying each term of x-8 by each term of x^{3}-7x-12.
\frac{x^{4}-7x^{2}+44x-8x^{3}+96}{\left(x^{2}-8x+16\right)\left(x+3\right)}
Combine -12x and 56x to get 44x.
\frac{x^{4}-7x^{2}+44x-8x^{3}+96}{x^{3}+3x^{2}-8x^{2}-24x+16x+48}
Apply the distributive property by multiplying each term of x^{2}-8x+16 by each term of x+3.
\frac{x^{4}-7x^{2}+44x-8x^{3}+96}{x^{3}-5x^{2}-24x+16x+48}
Combine 3x^{2} and -8x^{2} to get -5x^{2}.
\frac{x^{4}-7x^{2}+44x-8x^{3}+96}{x^{3}-5x^{2}-8x+48}
Combine -24x and 16x to get -8x.
\frac{x-8}{x^{2}-6x-2\left(x-8\right)}\left(x\left(x-3\right)+\frac{2\left(x-6\right)}{x+3}\right)
Use the distributive property to multiply x by x-6.
\frac{x-8}{x^{2}-6x-2x+16}\left(x\left(x-3\right)+\frac{2\left(x-6\right)}{x+3}\right)
Use the distributive property to multiply -2 by x-8.
\frac{x-8}{x^{2}-8x+16}\left(x\left(x-3\right)+\frac{2\left(x-6\right)}{x+3}\right)
Combine -6x and -2x to get -8x.
\frac{x-8}{x^{2}-8x+16}\left(x^{2}-3x+\frac{2\left(x-6\right)}{x+3}\right)
Use the distributive property to multiply x by x-3.
\frac{x-8}{x^{2}-8x+16}\left(x^{2}-3x+\frac{2x-12}{x+3}\right)
Use the distributive property to multiply 2 by x-6.
\frac{x-8}{x^{2}-8x+16}\left(\frac{\left(x^{2}-3x\right)\left(x+3\right)}{x+3}+\frac{2x-12}{x+3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}-3x times \frac{x+3}{x+3}.
\frac{x-8}{x^{2}-8x+16}\times \frac{\left(x^{2}-3x\right)\left(x+3\right)+2x-12}{x+3}
Since \frac{\left(x^{2}-3x\right)\left(x+3\right)}{x+3} and \frac{2x-12}{x+3} have the same denominator, add them by adding their numerators.
\frac{x-8}{x^{2}-8x+16}\times \frac{x^{3}+3x^{2}-3x^{2}-9x+2x-12}{x+3}
Do the multiplications in \left(x^{2}-3x\right)\left(x+3\right)+2x-12.
\frac{x-8}{x^{2}-8x+16}\times \frac{x^{3}-7x-12}{x+3}
Combine like terms in x^{3}+3x^{2}-3x^{2}-9x+2x-12.
\frac{\left(x-8\right)\left(x^{3}-7x-12\right)}{\left(x^{2}-8x+16\right)\left(x+3\right)}
Multiply \frac{x-8}{x^{2}-8x+16} times \frac{x^{3}-7x-12}{x+3} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{4}-7x^{2}-12x-8x^{3}+56x+96}{\left(x^{2}-8x+16\right)\left(x+3\right)}
Apply the distributive property by multiplying each term of x-8 by each term of x^{3}-7x-12.
\frac{x^{4}-7x^{2}+44x-8x^{3}+96}{\left(x^{2}-8x+16\right)\left(x+3\right)}
Combine -12x and 56x to get 44x.
\frac{x^{4}-7x^{2}+44x-8x^{3}+96}{x^{3}+3x^{2}-8x^{2}-24x+16x+48}
Apply the distributive property by multiplying each term of x^{2}-8x+16 by each term of x+3.
\frac{x^{4}-7x^{2}+44x-8x^{3}+96}{x^{3}-5x^{2}-24x+16x+48}
Combine 3x^{2} and -8x^{2} to get -5x^{2}.
\frac{x^{4}-7x^{2}+44x-8x^{3}+96}{x^{3}-5x^{2}-8x+48}
Combine -24x and 16x to get -8x.