Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(x-5\right)=4\times 6
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4x, the least common multiple of 4,x.
x^{2}-5x=4\times 6
Use the distributive property to multiply x by x-5.
x^{2}-5x=24
Multiply 4 and 6 to get 24.
x^{2}-5x-24=0
Subtract 24 from both sides.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-24\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -5 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-24\right)}}{2}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+96}}{2}
Multiply -4 times -24.
x=\frac{-\left(-5\right)±\sqrt{121}}{2}
Add 25 to 96.
x=\frac{-\left(-5\right)±11}{2}
Take the square root of 121.
x=\frac{5±11}{2}
The opposite of -5 is 5.
x=\frac{16}{2}
Now solve the equation x=\frac{5±11}{2} when ± is plus. Add 5 to 11.
x=8
Divide 16 by 2.
x=-\frac{6}{2}
Now solve the equation x=\frac{5±11}{2} when ± is minus. Subtract 11 from 5.
x=-3
Divide -6 by 2.
x=8 x=-3
The equation is now solved.
x\left(x-5\right)=4\times 6
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4x, the least common multiple of 4,x.
x^{2}-5x=4\times 6
Use the distributive property to multiply x by x-5.
x^{2}-5x=24
Multiply 4 and 6 to get 24.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=24+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=24+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{121}{4}
Add 24 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{121}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{11}{2} x-\frac{5}{2}=-\frac{11}{2}
Simplify.
x=8 x=-3
Add \frac{5}{2} to both sides of the equation.