Solve for x
x=11
Graph
Share
Copied to clipboard
\frac{x-5}{\frac{7}{5}-\frac{25}{5}}=\frac{4-1}{-\frac{4}{5}-1}
Convert 5 to fraction \frac{25}{5}.
\frac{x-5}{\frac{7-25}{5}}=\frac{4-1}{-\frac{4}{5}-1}
Since \frac{7}{5} and \frac{25}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{x-5}{-\frac{18}{5}}=\frac{4-1}{-\frac{4}{5}-1}
Subtract 25 from 7 to get -18.
\frac{-x+5}{\frac{18}{5}}=\frac{4-1}{-\frac{4}{5}-1}
Multiply both numerator and denominator by -1.
\frac{-x+5}{\frac{18}{5}}=\frac{3}{-\frac{4}{5}-1}
Subtract 1 from 4 to get 3.
\frac{-x+5}{\frac{18}{5}}=\frac{3}{-\frac{4}{5}-\frac{5}{5}}
Convert 1 to fraction \frac{5}{5}.
\frac{-x+5}{\frac{18}{5}}=\frac{3}{\frac{-4-5}{5}}
Since -\frac{4}{5} and \frac{5}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{-x+5}{\frac{18}{5}}=\frac{3}{-\frac{9}{5}}
Subtract 5 from -4 to get -9.
\frac{-x+5}{\frac{18}{5}}=3\left(-\frac{5}{9}\right)
Divide 3 by -\frac{9}{5} by multiplying 3 by the reciprocal of -\frac{9}{5}.
\frac{-x+5}{\frac{18}{5}}=\frac{3\left(-5\right)}{9}
Express 3\left(-\frac{5}{9}\right) as a single fraction.
\frac{-x+5}{\frac{18}{5}}=\frac{-15}{9}
Multiply 3 and -5 to get -15.
\frac{-x+5}{\frac{18}{5}}=-\frac{5}{3}
Reduce the fraction \frac{-15}{9} to lowest terms by extracting and canceling out 3.
\frac{-x}{\frac{18}{5}}+\frac{5}{\frac{18}{5}}=-\frac{5}{3}
Divide each term of -x+5 by \frac{18}{5} to get \frac{-x}{\frac{18}{5}}+\frac{5}{\frac{18}{5}}.
-\frac{5}{18}x+\frac{5}{\frac{18}{5}}=-\frac{5}{3}
Divide -x by \frac{18}{5} to get -\frac{5}{18}x.
-\frac{5}{18}x+5\times \frac{5}{18}=-\frac{5}{3}
Divide 5 by \frac{18}{5} by multiplying 5 by the reciprocal of \frac{18}{5}.
-\frac{5}{18}x+\frac{5\times 5}{18}=-\frac{5}{3}
Express 5\times \frac{5}{18} as a single fraction.
-\frac{5}{18}x+\frac{25}{18}=-\frac{5}{3}
Multiply 5 and 5 to get 25.
-\frac{5}{18}x=-\frac{5}{3}-\frac{25}{18}
Subtract \frac{25}{18} from both sides.
-\frac{5}{18}x=-\frac{30}{18}-\frac{25}{18}
Least common multiple of 3 and 18 is 18. Convert -\frac{5}{3} and \frac{25}{18} to fractions with denominator 18.
-\frac{5}{18}x=\frac{-30-25}{18}
Since -\frac{30}{18} and \frac{25}{18} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{18}x=-\frac{55}{18}
Subtract 25 from -30 to get -55.
x=-\frac{55}{18}\left(-\frac{18}{5}\right)
Multiply both sides by -\frac{18}{5}, the reciprocal of -\frac{5}{18}.
x=\frac{-55\left(-18\right)}{18\times 5}
Multiply -\frac{55}{18} times -\frac{18}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{990}{90}
Do the multiplications in the fraction \frac{-55\left(-18\right)}{18\times 5}.
x=11
Divide 990 by 90 to get 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}