Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-4}{\left(x-3\right)\left(x-2\right)}+\frac{x+7}{\left(x-4\right)\left(x+4\right)}
Factor x^{2}-5x+6. Factor x^{2}-16.
\frac{\left(x-4\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x+4\right)}+\frac{\left(x+7\right)\left(x-3\right)\left(x-2\right)}{\left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x-2\right) and \left(x-4\right)\left(x+4\right) is \left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x+4\right). Multiply \frac{x-4}{\left(x-3\right)\left(x-2\right)} times \frac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}. Multiply \frac{x+7}{\left(x-4\right)\left(x+4\right)} times \frac{\left(x-3\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}.
\frac{\left(x-4\right)\left(x-4\right)\left(x+4\right)+\left(x+7\right)\left(x-3\right)\left(x-2\right)}{\left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x+4\right)}
Since \frac{\left(x-4\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x+4\right)} and \frac{\left(x+7\right)\left(x-3\right)\left(x-2\right)}{\left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}-16x-4x^{2}+64+x^{3}-5x^{2}+6x+7x^{2}-35x+42}{\left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x+4\right)}
Do the multiplications in \left(x-4\right)\left(x-4\right)\left(x+4\right)+\left(x+7\right)\left(x-3\right)\left(x-2\right).
\frac{2x^{3}-45x-2x^{2}+106}{\left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x+4\right)}
Combine like terms in x^{3}-16x-4x^{2}+64+x^{3}-5x^{2}+6x+7x^{2}-35x+42.
\frac{2x^{3}-45x-2x^{2}+106}{x^{4}-5x^{3}-10x^{2}+80x-96}
Expand \left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x+4\right).
\frac{x-4}{\left(x-3\right)\left(x-2\right)}+\frac{x+7}{\left(x-4\right)\left(x+4\right)}
Factor x^{2}-5x+6. Factor x^{2}-16.
\frac{\left(x-4\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x+4\right)}+\frac{\left(x+7\right)\left(x-3\right)\left(x-2\right)}{\left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x-2\right) and \left(x-4\right)\left(x+4\right) is \left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x+4\right). Multiply \frac{x-4}{\left(x-3\right)\left(x-2\right)} times \frac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}. Multiply \frac{x+7}{\left(x-4\right)\left(x+4\right)} times \frac{\left(x-3\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}.
\frac{\left(x-4\right)\left(x-4\right)\left(x+4\right)+\left(x+7\right)\left(x-3\right)\left(x-2\right)}{\left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x+4\right)}
Since \frac{\left(x-4\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x+4\right)} and \frac{\left(x+7\right)\left(x-3\right)\left(x-2\right)}{\left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}-16x-4x^{2}+64+x^{3}-5x^{2}+6x+7x^{2}-35x+42}{\left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x+4\right)}
Do the multiplications in \left(x-4\right)\left(x-4\right)\left(x+4\right)+\left(x+7\right)\left(x-3\right)\left(x-2\right).
\frac{2x^{3}-45x-2x^{2}+106}{\left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x+4\right)}
Combine like terms in x^{3}-16x-4x^{2}+64+x^{3}-5x^{2}+6x+7x^{2}-35x+42.
\frac{2x^{3}-45x-2x^{2}+106}{x^{4}-5x^{3}-10x^{2}+80x-96}
Expand \left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x+4\right).