Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-4}{\left(x+1\right)\left(x+3\right)}-\frac{x-1}{\left(x-3\right)\left(x+3\right)}
Factor x^{2}+4x+3. Factor x^{2}-9.
\frac{\left(x-4\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+3\right) and \left(x-3\right)\left(x+3\right) is \left(x-3\right)\left(x+1\right)\left(x+3\right). Multiply \frac{x-4}{\left(x+1\right)\left(x+3\right)} times \frac{x-3}{x-3}. Multiply \frac{x-1}{\left(x-3\right)\left(x+3\right)} times \frac{x+1}{x+1}.
\frac{\left(x-4\right)\left(x-3\right)-\left(x-1\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}
Since \frac{\left(x-4\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)} and \frac{\left(x-1\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-3x-4x+12-x^{2}-x+x+1}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}
Do the multiplications in \left(x-4\right)\left(x-3\right)-\left(x-1\right)\left(x+1\right).
\frac{-7x+13}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}
Combine like terms in x^{2}-3x-4x+12-x^{2}-x+x+1.
\frac{-7x+13}{x^{3}+x^{2}-9x-9}
Expand \left(x-3\right)\left(x+1\right)\left(x+3\right).
\frac{x-4}{\left(x+1\right)\left(x+3\right)}-\frac{x-1}{\left(x-3\right)\left(x+3\right)}
Factor x^{2}+4x+3. Factor x^{2}-9.
\frac{\left(x-4\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+3\right) and \left(x-3\right)\left(x+3\right) is \left(x-3\right)\left(x+1\right)\left(x+3\right). Multiply \frac{x-4}{\left(x+1\right)\left(x+3\right)} times \frac{x-3}{x-3}. Multiply \frac{x-1}{\left(x-3\right)\left(x+3\right)} times \frac{x+1}{x+1}.
\frac{\left(x-4\right)\left(x-3\right)-\left(x-1\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}
Since \frac{\left(x-4\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)} and \frac{\left(x-1\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-3x-4x+12-x^{2}-x+x+1}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}
Do the multiplications in \left(x-4\right)\left(x-3\right)-\left(x-1\right)\left(x+1\right).
\frac{-7x+13}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}
Combine like terms in x^{2}-3x-4x+12-x^{2}-x+x+1.
\frac{-7x+13}{x^{3}+x^{2}-9x-9}
Expand \left(x-3\right)\left(x+1\right)\left(x+3\right).