Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x-3\right)\left(x^{2}+2x+1\right)}{\left(x^{2}-1\right)\left(x^{2}-2x-3\right)}+\frac{1}{x-1}
Divide \frac{x-3}{x^{2}-1} by \frac{x^{2}-2x-3}{x^{2}+2x+1} by multiplying \frac{x-3}{x^{2}-1} by the reciprocal of \frac{x^{2}-2x-3}{x^{2}+2x+1}.
\frac{\left(x-3\right)\left(x+1\right)^{2}}{\left(x-3\right)\left(x-1\right)\left(x+1\right)^{2}}+\frac{1}{x-1}
Factor the expressions that are not already factored in \frac{\left(x-3\right)\left(x^{2}+2x+1\right)}{\left(x^{2}-1\right)\left(x^{2}-2x-3\right)}.
\frac{1}{x-1}+\frac{1}{x-1}
Cancel out \left(x-3\right)\left(x+1\right)^{2} in both numerator and denominator.
2\times \frac{1}{x-1}
Combine \frac{1}{x-1} and \frac{1}{x-1} to get 2\times \frac{1}{x-1}.
\frac{2}{x-1}
Express 2\times \frac{1}{x-1} as a single fraction.
\frac{\left(x-3\right)\left(x^{2}+2x+1\right)}{\left(x^{2}-1\right)\left(x^{2}-2x-3\right)}+\frac{1}{x-1}
Divide \frac{x-3}{x^{2}-1} by \frac{x^{2}-2x-3}{x^{2}+2x+1} by multiplying \frac{x-3}{x^{2}-1} by the reciprocal of \frac{x^{2}-2x-3}{x^{2}+2x+1}.
\frac{\left(x-3\right)\left(x+1\right)^{2}}{\left(x-3\right)\left(x-1\right)\left(x+1\right)^{2}}+\frac{1}{x-1}
Factor the expressions that are not already factored in \frac{\left(x-3\right)\left(x^{2}+2x+1\right)}{\left(x^{2}-1\right)\left(x^{2}-2x-3\right)}.
\frac{1}{x-1}+\frac{1}{x-1}
Cancel out \left(x-3\right)\left(x+1\right)^{2} in both numerator and denominator.
2\times \frac{1}{x-1}
Combine \frac{1}{x-1} and \frac{1}{x-1} to get 2\times \frac{1}{x-1}.
\frac{2}{x-1}
Express 2\times \frac{1}{x-1} as a single fraction.