Solve for x
x>\frac{31}{7}
Graph
Share
Copied to clipboard
2\left(x-3\right)-10>5\left(3-x\right)
Multiply both sides of the equation by 10, the least common multiple of 5,2. Since 10 is positive, the inequality direction remains the same.
2x-6-10>5\left(3-x\right)
Use the distributive property to multiply 2 by x-3.
2x-16>5\left(3-x\right)
Subtract 10 from -6 to get -16.
2x-16>15-5x
Use the distributive property to multiply 5 by 3-x.
2x-16+5x>15
Add 5x to both sides.
7x-16>15
Combine 2x and 5x to get 7x.
7x>15+16
Add 16 to both sides.
7x>31
Add 15 and 16 to get 31.
x>\frac{31}{7}
Divide both sides by 7. Since 7 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}