Solve for x
x = \frac{27}{19} = 1\frac{8}{19} \approx 1.421052632
Graph
Share
Copied to clipboard
\left(3x-4\right)\left(x-2\right)+\left(x-1\right)\times 5=\left(3x-4\right)\left(x+6\right)
Variable x cannot be equal to any of the values 1,\frac{4}{3} since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(3x-4\right), the least common multiple of x-1,3x-4.
3x^{2}-10x+8+\left(x-1\right)\times 5=\left(3x-4\right)\left(x+6\right)
Use the distributive property to multiply 3x-4 by x-2 and combine like terms.
3x^{2}-10x+8+5x-5=\left(3x-4\right)\left(x+6\right)
Use the distributive property to multiply x-1 by 5.
3x^{2}-5x+8-5=\left(3x-4\right)\left(x+6\right)
Combine -10x and 5x to get -5x.
3x^{2}-5x+3=\left(3x-4\right)\left(x+6\right)
Subtract 5 from 8 to get 3.
3x^{2}-5x+3=3x^{2}+14x-24
Use the distributive property to multiply 3x-4 by x+6 and combine like terms.
3x^{2}-5x+3-3x^{2}=14x-24
Subtract 3x^{2} from both sides.
-5x+3=14x-24
Combine 3x^{2} and -3x^{2} to get 0.
-5x+3-14x=-24
Subtract 14x from both sides.
-19x+3=-24
Combine -5x and -14x to get -19x.
-19x=-24-3
Subtract 3 from both sides.
-19x=-27
Subtract 3 from -24 to get -27.
x=\frac{-27}{-19}
Divide both sides by -19.
x=\frac{27}{19}
Fraction \frac{-27}{-19} can be simplified to \frac{27}{19} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}