Solve for x
x=-\frac{5}{9}\approx -0.555555556
Graph
Share
Copied to clipboard
\left(x-3\right)\left(x-2\right)-\left(x-1\right)\left(x+1\right)=\left(x+3\right)\times 4
Variable x cannot be equal to any of the values -3,1,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x-1\right)\left(x+3\right), the least common multiple of x^{2}+2x-3,x^{2}-9,x^{2}-4x+3.
x^{2}-5x+6-\left(x-1\right)\left(x+1\right)=\left(x+3\right)\times 4
Use the distributive property to multiply x-3 by x-2 and combine like terms.
x^{2}-5x+6-\left(x^{2}-1\right)=\left(x+3\right)\times 4
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
x^{2}-5x+6-x^{2}+1=\left(x+3\right)\times 4
To find the opposite of x^{2}-1, find the opposite of each term.
-5x+6+1=\left(x+3\right)\times 4
Combine x^{2} and -x^{2} to get 0.
-5x+7=\left(x+3\right)\times 4
Add 6 and 1 to get 7.
-5x+7=4x+12
Use the distributive property to multiply x+3 by 4.
-5x+7-4x=12
Subtract 4x from both sides.
-9x+7=12
Combine -5x and -4x to get -9x.
-9x=12-7
Subtract 7 from both sides.
-9x=5
Subtract 7 from 12 to get 5.
x=\frac{5}{-9}
Divide both sides by -9.
x=-\frac{5}{9}
Fraction \frac{5}{-9} can be rewritten as -\frac{5}{9} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}