Microsoft Math Solver
Solve
Practice
Download
Solve
Practice
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Download
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Solve
algebra
trigonometry
statistics
calculus
matrices
variables
list
Solve for x
x\geq 11
View solution steps
Solution Steps
\frac { x - 2 } { 6 } \geq \frac { x - 1 } { 9 } + \frac { 7 } { 18 }
Multiply both sides of the equation by 18, the least common multiple of 6,9,18. Since 18 is positive, the inequality direction remains the same.
3\left(x-2\right)\geq 2\left(x-1\right)+7
Use the distributive property to multiply 3 by x-2.
3x-6\geq 2\left(x-1\right)+7
Use the distributive property to multiply 2 by x-1.
3x-6\geq 2x-2+7
Add -2 and 7 to get 5.
3x-6\geq 2x+5
Subtract 2x from both sides.
3x-6-2x\geq 5
Combine 3x and -2x to get x.
x-6\geq 5
Add 6 to both sides.
x\geq 5+6
Add 5 and 6 to get 11.
x\geq 11
Graph
Graph Inequality
Graph Both Sides in 2D
Quiz
Algebra
5 problems similar to:
\frac { x - 2 } { 6 } \geq \frac { x - 1 } { 9 } + \frac { 7 } { 18 }
Similar Problems from Web Search
How do you solve \displaystyle{\frac{{{x}-{1}}}{{{2}}}}\geq{\frac{{{x}}}{{{3}}}}+{2} ?
https://socratic.org/questions/how-do-you-solve-frac-x-1-2-geq-frac-x-3-2
\displaystyle{x}\ge{15} Explanation: To get rid of the denominators, you could multiply by \displaystyle{2} or \displaystyle{3} , but this would only take care of one problem. Because of ...
How do you solve \displaystyle{\frac{{{5}{\left({x}-{2}\right)}}}{{{2}}}}\geq{\frac{{{2}{x}}}{{{11}}}}-{8} ?
https://socratic.org/questions/how-do-you-solve-frac-5-x-2-2-geq-frac-2x-11-8
Douglas K. Nov 5, 2017 Given: \displaystyle\frac{{{5}{\left({x}-{2}\right)}}}{{2}}\ge\frac{{{2}{x}}}{{11}}-{8} Multiply both sides by 22: \displaystyle{55}{\left({x}-{2}\right)}\ge{4}{x}-{176} ...
How do you solve \displaystyle{2}{x}-\frac{{2}}{{3}}\ge{x}-{22} ?
https://socratic.org/questions/how-do-you-solve-2x-2-3-x-22
\displaystyle{x}\geq{21} Explanation: First, let's remove the fraction by multiplying by 3 on both sides. \displaystyle{2}{x}-\frac{{2}}{{3}}\geq{x}-{22}\to \displaystyle{3}{\left({2}{x}-\frac{{2}}{{3}}\geq{x}-{22}\right)}\to ...
What are the boundaries of x if \displaystyle\frac{{{2}{x}-{1}}}{{{x}+{5}}}\ge\frac{{{x}+{2}}}{{{x}+{3}}}?
https://socratic.org/questions/what-are-the-boundaries-of-x-if-2x-1-x-5-x-2-x-3
\displaystyle{x}=-{5},{x}=-{3},{x}={1}-\sqrt{{{14}}},{x}={1}+\sqrt{{{14}}} \displaystyle\ge\ \text{ occurs for }\ {x}{<}-{5}\ \text{ and }\ {x}\ge{1}+\sqrt{{{14}}}\ \text{ and} \displaystyle-{3}{<}{x}\le{1}-\sqrt{{{14}}}\text{.} ...
How do you solve \displaystyle-\frac{{10}}{{{x}-{5}}}\ge-\frac{{11}}{{{x}-{6}}} ?
https://socratic.org/questions/how-do-you-solve-10-x-5-11-x-6
Get rid of the fractions and divide everything by a negative including the \displaystyle\ge sign. Explanation: Multiply both sides by (x-5)(x-6) This will get rid of the fractions. \displaystyle{\left({x}-{5}\right)}{\left({x}-{6}\right)}\times-\frac{{10}}{{{x}-{5}}}\ge{\left({x}-{5}\right)}{\left({x}-{6}\right)}\times-\frac{{11}}{{{x}-{6}}} ...
How do you solve \displaystyle\frac{{{2}{x}-{4}}}{{6}}\ge-{5}{x}+{2} ?
https://socratic.org/questions/how-do-you-solve-2x-4-6-5x-2
See the entire solution process below: Explanation: First step, multiply each side of the inequality by \displaystyle{\left({6}\right)} to eliminate the fraction: \displaystyle{\left({6}\right)}\times\frac{{{2}{x}-{4}}}{{6}}\ge{\left({6}\right)}{\left(-{5}{x}+{2}\right)} ...
More Items
Share
Copy
Copied to clipboard
3\left(x-2\right)\geq 2\left(x-1\right)+7
Multiply both sides of the equation by 18, the least common multiple of 6,9,18. Since 18 is positive, the inequality direction remains the same.
3x-6\geq 2\left(x-1\right)+7
Use the distributive property to multiply 3 by x-2.
3x-6\geq 2x-2+7
Use the distributive property to multiply 2 by x-1.
3x-6\geq 2x+5
Add -2 and 7 to get 5.
3x-6-2x\geq 5
Subtract 2x from both sides.
x-6\geq 5
Combine 3x and -2x to get x.
x\geq 5+6
Add 6 to both sides.
x\geq 11
Add 5 and 6 to get 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}
Back to top