Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(x-2\right)\times \frac{x+1}{3}-6\left(x+3\right)=75
Multiply both sides of the equation by 30, the least common multiple of 6,3,5,2.
\frac{5\left(x+1\right)}{3}\left(x-2\right)-6\left(x+3\right)=75
Express 5\times \frac{x+1}{3} as a single fraction.
\frac{5\left(x+1\right)}{3}x-2\times \frac{5\left(x+1\right)}{3}-6\left(x+3\right)=75
Use the distributive property to multiply \frac{5\left(x+1\right)}{3} by x-2.
\frac{5x+5}{3}x-2\times \frac{5\left(x+1\right)}{3}-6\left(x+3\right)=75
Use the distributive property to multiply 5 by x+1.
\frac{\left(5x+5\right)x}{3}-2\times \frac{5\left(x+1\right)}{3}-6\left(x+3\right)=75
Express \frac{5x+5}{3}x as a single fraction.
\frac{\left(5x+5\right)x}{3}-2\times \frac{5x+5}{3}-6\left(x+3\right)=75
Use the distributive property to multiply 5 by x+1.
\frac{\left(5x+5\right)x}{3}+\frac{-2\left(5x+5\right)}{3}-6\left(x+3\right)=75
Express -2\times \frac{5x+5}{3} as a single fraction.
\frac{\left(5x+5\right)x-2\left(5x+5\right)}{3}-6\left(x+3\right)=75
Since \frac{\left(5x+5\right)x}{3} and \frac{-2\left(5x+5\right)}{3} have the same denominator, add them by adding their numerators.
\frac{5x^{2}+5x-10x-10}{3}-6\left(x+3\right)=75
Do the multiplications in \left(5x+5\right)x-2\left(5x+5\right).
\frac{5x^{2}-5x-10}{3}-6\left(x+3\right)=75
Combine like terms in 5x^{2}+5x-10x-10.
\frac{5x^{2}-5x-10}{3}-6x-18=75
Use the distributive property to multiply -6 by x+3.
\frac{5}{3}x^{2}-\frac{5}{3}x-\frac{10}{3}-6x-18=75
Divide each term of 5x^{2}-5x-10 by 3 to get \frac{5}{3}x^{2}-\frac{5}{3}x-\frac{10}{3}.
\frac{5}{3}x^{2}-\frac{23}{3}x-\frac{10}{3}-18=75
Combine -\frac{5}{3}x and -6x to get -\frac{23}{3}x.
\frac{5}{3}x^{2}-\frac{23}{3}x-\frac{10}{3}-\frac{54}{3}=75
Convert 18 to fraction \frac{54}{3}.
\frac{5}{3}x^{2}-\frac{23}{3}x+\frac{-10-54}{3}=75
Since -\frac{10}{3} and \frac{54}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{3}x^{2}-\frac{23}{3}x-\frac{64}{3}=75
Subtract 54 from -10 to get -64.
\frac{5}{3}x^{2}-\frac{23}{3}x-\frac{64}{3}-75=0
Subtract 75 from both sides.
\frac{5}{3}x^{2}-\frac{23}{3}x-\frac{64}{3}-\frac{225}{3}=0
Convert 75 to fraction \frac{225}{3}.
\frac{5}{3}x^{2}-\frac{23}{3}x+\frac{-64-225}{3}=0
Since -\frac{64}{3} and \frac{225}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{3}x^{2}-\frac{23}{3}x-\frac{289}{3}=0
Subtract 225 from -64 to get -289.
x=\frac{-\left(-\frac{23}{3}\right)±\sqrt{\left(-\frac{23}{3}\right)^{2}-4\times \frac{5}{3}\left(-\frac{289}{3}\right)}}{2\times \frac{5}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{5}{3} for a, -\frac{23}{3} for b, and -\frac{289}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{23}{3}\right)±\sqrt{\frac{529}{9}-4\times \frac{5}{3}\left(-\frac{289}{3}\right)}}{2\times \frac{5}{3}}
Square -\frac{23}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{23}{3}\right)±\sqrt{\frac{529}{9}-\frac{20}{3}\left(-\frac{289}{3}\right)}}{2\times \frac{5}{3}}
Multiply -4 times \frac{5}{3}.
x=\frac{-\left(-\frac{23}{3}\right)±\sqrt{\frac{529+5780}{9}}}{2\times \frac{5}{3}}
Multiply -\frac{20}{3} times -\frac{289}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{23}{3}\right)±\sqrt{701}}{2\times \frac{5}{3}}
Add \frac{529}{9} to \frac{5780}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{\frac{23}{3}±\sqrt{701}}{2\times \frac{5}{3}}
The opposite of -\frac{23}{3} is \frac{23}{3}.
x=\frac{\frac{23}{3}±\sqrt{701}}{\frac{10}{3}}
Multiply 2 times \frac{5}{3}.
x=\frac{\sqrt{701}+\frac{23}{3}}{\frac{10}{3}}
Now solve the equation x=\frac{\frac{23}{3}±\sqrt{701}}{\frac{10}{3}} when ± is plus. Add \frac{23}{3} to \sqrt{701}.
x=\frac{3\sqrt{701}+23}{10}
Divide \frac{23}{3}+\sqrt{701} by \frac{10}{3} by multiplying \frac{23}{3}+\sqrt{701} by the reciprocal of \frac{10}{3}.
x=\frac{\frac{23}{3}-\sqrt{701}}{\frac{10}{3}}
Now solve the equation x=\frac{\frac{23}{3}±\sqrt{701}}{\frac{10}{3}} when ± is minus. Subtract \sqrt{701} from \frac{23}{3}.
x=\frac{23-3\sqrt{701}}{10}
Divide \frac{23}{3}-\sqrt{701} by \frac{10}{3} by multiplying \frac{23}{3}-\sqrt{701} by the reciprocal of \frac{10}{3}.
x=\frac{3\sqrt{701}+23}{10} x=\frac{23-3\sqrt{701}}{10}
The equation is now solved.
5\left(x-2\right)\times \frac{x+1}{3}-6\left(x+3\right)=75
Multiply both sides of the equation by 30, the least common multiple of 6,3,5,2.
\frac{5\left(x+1\right)}{3}\left(x-2\right)-6\left(x+3\right)=75
Express 5\times \frac{x+1}{3} as a single fraction.
\frac{5\left(x+1\right)}{3}x-2\times \frac{5\left(x+1\right)}{3}-6\left(x+3\right)=75
Use the distributive property to multiply \frac{5\left(x+1\right)}{3} by x-2.
\frac{5x+5}{3}x-2\times \frac{5\left(x+1\right)}{3}-6\left(x+3\right)=75
Use the distributive property to multiply 5 by x+1.
\frac{\left(5x+5\right)x}{3}-2\times \frac{5\left(x+1\right)}{3}-6\left(x+3\right)=75
Express \frac{5x+5}{3}x as a single fraction.
\frac{\left(5x+5\right)x}{3}-2\times \frac{5x+5}{3}-6\left(x+3\right)=75
Use the distributive property to multiply 5 by x+1.
\frac{\left(5x+5\right)x}{3}+\frac{-2\left(5x+5\right)}{3}-6\left(x+3\right)=75
Express -2\times \frac{5x+5}{3} as a single fraction.
\frac{\left(5x+5\right)x-2\left(5x+5\right)}{3}-6\left(x+3\right)=75
Since \frac{\left(5x+5\right)x}{3} and \frac{-2\left(5x+5\right)}{3} have the same denominator, add them by adding their numerators.
\frac{5x^{2}+5x-10x-10}{3}-6\left(x+3\right)=75
Do the multiplications in \left(5x+5\right)x-2\left(5x+5\right).
\frac{5x^{2}-5x-10}{3}-6\left(x+3\right)=75
Combine like terms in 5x^{2}+5x-10x-10.
\frac{5x^{2}-5x-10}{3}-6x-18=75
Use the distributive property to multiply -6 by x+3.
\frac{5}{3}x^{2}-\frac{5}{3}x-\frac{10}{3}-6x-18=75
Divide each term of 5x^{2}-5x-10 by 3 to get \frac{5}{3}x^{2}-\frac{5}{3}x-\frac{10}{3}.
\frac{5}{3}x^{2}-\frac{23}{3}x-\frac{10}{3}-18=75
Combine -\frac{5}{3}x and -6x to get -\frac{23}{3}x.
\frac{5}{3}x^{2}-\frac{23}{3}x-\frac{10}{3}-\frac{54}{3}=75
Convert 18 to fraction \frac{54}{3}.
\frac{5}{3}x^{2}-\frac{23}{3}x+\frac{-10-54}{3}=75
Since -\frac{10}{3} and \frac{54}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{3}x^{2}-\frac{23}{3}x-\frac{64}{3}=75
Subtract 54 from -10 to get -64.
\frac{5}{3}x^{2}-\frac{23}{3}x=75+\frac{64}{3}
Add \frac{64}{3} to both sides.
\frac{5}{3}x^{2}-\frac{23}{3}x=\frac{225}{3}+\frac{64}{3}
Convert 75 to fraction \frac{225}{3}.
\frac{5}{3}x^{2}-\frac{23}{3}x=\frac{225+64}{3}
Since \frac{225}{3} and \frac{64}{3} have the same denominator, add them by adding their numerators.
\frac{5}{3}x^{2}-\frac{23}{3}x=\frac{289}{3}
Add 225 and 64 to get 289.
\frac{\frac{5}{3}x^{2}-\frac{23}{3}x}{\frac{5}{3}}=\frac{\frac{289}{3}}{\frac{5}{3}}
Divide both sides of the equation by \frac{5}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{23}{3}}{\frac{5}{3}}\right)x=\frac{\frac{289}{3}}{\frac{5}{3}}
Dividing by \frac{5}{3} undoes the multiplication by \frac{5}{3}.
x^{2}-\frac{23}{5}x=\frac{\frac{289}{3}}{\frac{5}{3}}
Divide -\frac{23}{3} by \frac{5}{3} by multiplying -\frac{23}{3} by the reciprocal of \frac{5}{3}.
x^{2}-\frac{23}{5}x=\frac{289}{5}
Divide \frac{289}{3} by \frac{5}{3} by multiplying \frac{289}{3} by the reciprocal of \frac{5}{3}.
x^{2}-\frac{23}{5}x+\left(-\frac{23}{10}\right)^{2}=\frac{289}{5}+\left(-\frac{23}{10}\right)^{2}
Divide -\frac{23}{5}, the coefficient of the x term, by 2 to get -\frac{23}{10}. Then add the square of -\frac{23}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{23}{5}x+\frac{529}{100}=\frac{289}{5}+\frac{529}{100}
Square -\frac{23}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{23}{5}x+\frac{529}{100}=\frac{6309}{100}
Add \frac{289}{5} to \frac{529}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{23}{10}\right)^{2}=\frac{6309}{100}
Factor x^{2}-\frac{23}{5}x+\frac{529}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{23}{10}\right)^{2}}=\sqrt{\frac{6309}{100}}
Take the square root of both sides of the equation.
x-\frac{23}{10}=\frac{3\sqrt{701}}{10} x-\frac{23}{10}=-\frac{3\sqrt{701}}{10}
Simplify.
x=\frac{3\sqrt{701}+23}{10} x=\frac{23-3\sqrt{701}}{10}
Add \frac{23}{10} to both sides of the equation.