Solve for x
x = -\frac{40}{17} = -2\frac{6}{17} \approx -2.352941176
Graph
Share
Copied to clipboard
9\left(x-2\right)-6\left(x+5\right)=4\left(5x-2\right)
Multiply both sides of the equation by 36, the least common multiple of 4,6,9.
9x-18-6\left(x+5\right)=4\left(5x-2\right)
Use the distributive property to multiply 9 by x-2.
9x-18-6x-30=4\left(5x-2\right)
Use the distributive property to multiply -6 by x+5.
3x-18-30=4\left(5x-2\right)
Combine 9x and -6x to get 3x.
3x-48=4\left(5x-2\right)
Subtract 30 from -18 to get -48.
3x-48=20x-8
Use the distributive property to multiply 4 by 5x-2.
3x-48-20x=-8
Subtract 20x from both sides.
-17x-48=-8
Combine 3x and -20x to get -17x.
-17x=-8+48
Add 48 to both sides.
-17x=40
Add -8 and 48 to get 40.
x=\frac{40}{-17}
Divide both sides by -17.
x=-\frac{40}{17}
Fraction \frac{40}{-17} can be rewritten as -\frac{40}{17} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}