Evaluate
\frac{3\left(x-2\right)}{2}
Expand
\frac{3x}{2}-3
Graph
Share
Copied to clipboard
\frac{x-2}{2}-2-\left(-x\right)
To find the opposite of 2-x, find the opposite of each term.
\frac{x-2}{2}-2+x
The opposite of -x is x.
\frac{x-2}{2}+\frac{2\left(-2+x\right)}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2+x times \frac{2}{2}.
\frac{x-2+2\left(-2+x\right)}{2}
Since \frac{x-2}{2} and \frac{2\left(-2+x\right)}{2} have the same denominator, add them by adding their numerators.
\frac{x-2-4+2x}{2}
Do the multiplications in x-2+2\left(-2+x\right).
\frac{3x-6}{2}
Combine like terms in x-2-4+2x.
\frac{x-2}{2}-2-\left(-x\right)
To find the opposite of 2-x, find the opposite of each term.
\frac{x-2}{2}-2+x
The opposite of -x is x.
\frac{x-2}{2}+\frac{2\left(-2+x\right)}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2+x times \frac{2}{2}.
\frac{x-2+2\left(-2+x\right)}{2}
Since \frac{x-2}{2} and \frac{2\left(-2+x\right)}{2} have the same denominator, add them by adding their numerators.
\frac{x-2-4+2x}{2}
Do the multiplications in x-2+2\left(-2+x\right).
\frac{3x-6}{2}
Combine like terms in x-2-4+2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}