Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{1}{x}\left(x-4\right)\left(x+4\right)}{5x}\left(2-\frac{2x^{-1}-2x^{-2}}{x^{-1}+4x^{-2}}\right)
Factor the expressions that are not already factored in \frac{x-16x^{-1}}{5x}.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\left(2-\frac{2x^{-1}-2x^{-2}}{x^{-1}+4x^{-2}}\right)
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\left(2-\frac{2\times \left(\frac{1}{x}\right)^{2}\left(x-1\right)}{\left(\frac{1}{x}\right)^{2}\left(x+4\right)}\right)
Factor the expressions that are not already factored in \frac{2x^{-1}-2x^{-2}}{x^{-1}+4x^{-2}}.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\left(2-\frac{2\left(x-1\right)}{x+4}\right)
Cancel out \left(\frac{1}{x}\right)^{2} in both numerator and denominator.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\left(\frac{2\left(x+4\right)}{x+4}-\frac{2\left(x-1\right)}{x+4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x+4}{x+4}.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\times \frac{2\left(x+4\right)-2\left(x-1\right)}{x+4}
Since \frac{2\left(x+4\right)}{x+4} and \frac{2\left(x-1\right)}{x+4} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\times \frac{2x+8-2x+2}{x+4}
Do the multiplications in 2\left(x+4\right)-2\left(x-1\right).
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\times \frac{10}{x+4}
Combine like terms in 2x+8-2x+2.
\frac{\left(x-4\right)\left(x+4\right)\times 10}{5x^{2}\left(x+4\right)}
Multiply \frac{\left(x-4\right)\left(x+4\right)}{5x^{2}} times \frac{10}{x+4} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(x-4\right)}{x^{2}}
Cancel out 5\left(x+4\right) in both numerator and denominator.
\frac{2x-8}{x^{2}}
Use the distributive property to multiply 2 by x-4.
\frac{\frac{1}{x}\left(x-4\right)\left(x+4\right)}{5x}\left(2-\frac{2x^{-1}-2x^{-2}}{x^{-1}+4x^{-2}}\right)
Factor the expressions that are not already factored in \frac{x-16x^{-1}}{5x}.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\left(2-\frac{2x^{-1}-2x^{-2}}{x^{-1}+4x^{-2}}\right)
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\left(2-\frac{2\times \left(\frac{1}{x}\right)^{2}\left(x-1\right)}{\left(\frac{1}{x}\right)^{2}\left(x+4\right)}\right)
Factor the expressions that are not already factored in \frac{2x^{-1}-2x^{-2}}{x^{-1}+4x^{-2}}.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\left(2-\frac{2\left(x-1\right)}{x+4}\right)
Cancel out \left(\frac{1}{x}\right)^{2} in both numerator and denominator.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\left(\frac{2\left(x+4\right)}{x+4}-\frac{2\left(x-1\right)}{x+4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x+4}{x+4}.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\times \frac{2\left(x+4\right)-2\left(x-1\right)}{x+4}
Since \frac{2\left(x+4\right)}{x+4} and \frac{2\left(x-1\right)}{x+4} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\times \frac{2x+8-2x+2}{x+4}
Do the multiplications in 2\left(x+4\right)-2\left(x-1\right).
\frac{\left(x-4\right)\left(x+4\right)}{5x^{2}}\times \frac{10}{x+4}
Combine like terms in 2x+8-2x+2.
\frac{\left(x-4\right)\left(x+4\right)\times 10}{5x^{2}\left(x+4\right)}
Multiply \frac{\left(x-4\right)\left(x+4\right)}{5x^{2}} times \frac{10}{x+4} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(x-4\right)}{x^{2}}
Cancel out 5\left(x+4\right) in both numerator and denominator.
\frac{2x-8}{x^{2}}
Use the distributive property to multiply 2 by x-4.