Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-1}{\left(x+1\right)\left(x+3\right)}+\frac{x}{\left(x-3\right)\left(x+3\right)}-\frac{x+3}{x^{2}-2x-3}
Factor x^{2}+4x+3. Factor x^{2}-9.
\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}+\frac{x\left(x+1\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}-\frac{x+3}{x^{2}-2x-3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+3\right) and \left(x-3\right)\left(x+3\right) is \left(x-3\right)\left(x+1\right)\left(x+3\right). Multiply \frac{x-1}{\left(x+1\right)\left(x+3\right)} times \frac{x-3}{x-3}. Multiply \frac{x}{\left(x-3\right)\left(x+3\right)} times \frac{x+1}{x+1}.
\frac{\left(x-1\right)\left(x-3\right)+x\left(x+1\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}-\frac{x+3}{x^{2}-2x-3}
Since \frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)} and \frac{x\left(x+1\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-3x-x+3+x^{2}+x}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}-\frac{x+3}{x^{2}-2x-3}
Do the multiplications in \left(x-1\right)\left(x-3\right)+x\left(x+1\right).
\frac{2x^{2}-3x+3}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}-\frac{x+3}{x^{2}-2x-3}
Combine like terms in x^{2}-3x-x+3+x^{2}+x.
\frac{2x^{2}-3x+3}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}-\frac{x+3}{\left(x-3\right)\left(x+1\right)}
Factor x^{2}-2x-3.
\frac{2x^{2}-3x+3}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}-\frac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+1\right)\left(x+3\right) and \left(x-3\right)\left(x+1\right) is \left(x-3\right)\left(x+1\right)\left(x+3\right). Multiply \frac{x+3}{\left(x-3\right)\left(x+1\right)} times \frac{x+3}{x+3}.
\frac{2x^{2}-3x+3-\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}
Since \frac{2x^{2}-3x+3}{\left(x-3\right)\left(x+1\right)\left(x+3\right)} and \frac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}-3x+3-x^{2}-3x-3x-9}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}
Do the multiplications in 2x^{2}-3x+3-\left(x+3\right)\left(x+3\right).
\frac{x^{2}-9x-6}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}
Combine like terms in 2x^{2}-3x+3-x^{2}-3x-3x-9.
\frac{x^{2}-9x-6}{x^{3}+x^{2}-9x-9}
Expand \left(x-3\right)\left(x+1\right)\left(x+3\right).
\frac{x-1}{\left(x+1\right)\left(x+3\right)}+\frac{x}{\left(x-3\right)\left(x+3\right)}-\frac{x+3}{x^{2}-2x-3}
Factor x^{2}+4x+3. Factor x^{2}-9.
\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}+\frac{x\left(x+1\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}-\frac{x+3}{x^{2}-2x-3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+3\right) and \left(x-3\right)\left(x+3\right) is \left(x-3\right)\left(x+1\right)\left(x+3\right). Multiply \frac{x-1}{\left(x+1\right)\left(x+3\right)} times \frac{x-3}{x-3}. Multiply \frac{x}{\left(x-3\right)\left(x+3\right)} times \frac{x+1}{x+1}.
\frac{\left(x-1\right)\left(x-3\right)+x\left(x+1\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}-\frac{x+3}{x^{2}-2x-3}
Since \frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)} and \frac{x\left(x+1\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-3x-x+3+x^{2}+x}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}-\frac{x+3}{x^{2}-2x-3}
Do the multiplications in \left(x-1\right)\left(x-3\right)+x\left(x+1\right).
\frac{2x^{2}-3x+3}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}-\frac{x+3}{x^{2}-2x-3}
Combine like terms in x^{2}-3x-x+3+x^{2}+x.
\frac{2x^{2}-3x+3}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}-\frac{x+3}{\left(x-3\right)\left(x+1\right)}
Factor x^{2}-2x-3.
\frac{2x^{2}-3x+3}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}-\frac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+1\right)\left(x+3\right) and \left(x-3\right)\left(x+1\right) is \left(x-3\right)\left(x+1\right)\left(x+3\right). Multiply \frac{x+3}{\left(x-3\right)\left(x+1\right)} times \frac{x+3}{x+3}.
\frac{2x^{2}-3x+3-\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}
Since \frac{2x^{2}-3x+3}{\left(x-3\right)\left(x+1\right)\left(x+3\right)} and \frac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+1\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}-3x+3-x^{2}-3x-3x-9}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}
Do the multiplications in 2x^{2}-3x+3-\left(x+3\right)\left(x+3\right).
\frac{x^{2}-9x-6}{\left(x-3\right)\left(x+1\right)\left(x+3\right)}
Combine like terms in 2x^{2}-3x+3-x^{2}-3x-3x-9.
\frac{x^{2}-9x-6}{x^{3}+x^{2}-9x-9}
Expand \left(x-3\right)\left(x+1\right)\left(x+3\right).