Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-1}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+2\right)\left(x+3\right)}
Factor x^{2}+4x+3. Factor x^{2}+5x+6.
\frac{\left(x-1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+3\right) and \left(x+2\right)\left(x+3\right) is \left(x+1\right)\left(x+2\right)\left(x+3\right). Multiply \frac{x-1}{\left(x+1\right)\left(x+3\right)} times \frac{x+2}{x+2}. Multiply \frac{2}{\left(x+2\right)\left(x+3\right)} times \frac{x+1}{x+1}.
\frac{\left(x-1\right)\left(x+2\right)+2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Since \frac{\left(x-1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)} and \frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+2x-x-2+2x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Do the multiplications in \left(x-1\right)\left(x+2\right)+2\left(x+1\right).
\frac{x^{2}+3x}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Combine like terms in x^{2}+2x-x-2+2x+2.
\frac{x\left(x+3\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{x^{2}+3x}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}.
\frac{x}{\left(x+1\right)\left(x+2\right)}
Cancel out x+3 in both numerator and denominator.
\frac{x}{x^{2}+3x+2}
Expand \left(x+1\right)\left(x+2\right).
\frac{x-1}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+2\right)\left(x+3\right)}
Factor x^{2}+4x+3. Factor x^{2}+5x+6.
\frac{\left(x-1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+3\right) and \left(x+2\right)\left(x+3\right) is \left(x+1\right)\left(x+2\right)\left(x+3\right). Multiply \frac{x-1}{\left(x+1\right)\left(x+3\right)} times \frac{x+2}{x+2}. Multiply \frac{2}{\left(x+2\right)\left(x+3\right)} times \frac{x+1}{x+1}.
\frac{\left(x-1\right)\left(x+2\right)+2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Since \frac{\left(x-1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)} and \frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+2x-x-2+2x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Do the multiplications in \left(x-1\right)\left(x+2\right)+2\left(x+1\right).
\frac{x^{2}+3x}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Combine like terms in x^{2}+2x-x-2+2x+2.
\frac{x\left(x+3\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{x^{2}+3x}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}.
\frac{x}{\left(x+1\right)\left(x+2\right)}
Cancel out x+3 in both numerator and denominator.
\frac{x}{x^{2}+3x+2}
Expand \left(x+1\right)\left(x+2\right).