Solve for x
x = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
Graph
Share
Copied to clipboard
\left(x+2\right)\left(x-1\right)=x+1+\left(x+1\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,-1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)\left(x+2\right), the least common multiple of x+1,x+2.
x^{2}+x-2=x+1+\left(x+1\right)\left(x+2\right)
Use the distributive property to multiply x+2 by x-1 and combine like terms.
x^{2}+x-2=x+1+x^{2}+3x+2
Use the distributive property to multiply x+1 by x+2 and combine like terms.
x^{2}+x-2=4x+1+x^{2}+2
Combine x and 3x to get 4x.
x^{2}+x-2=4x+3+x^{2}
Add 1 and 2 to get 3.
x^{2}+x-2-4x=3+x^{2}
Subtract 4x from both sides.
x^{2}-3x-2=3+x^{2}
Combine x and -4x to get -3x.
x^{2}-3x-2-x^{2}=3
Subtract x^{2} from both sides.
-3x-2=3
Combine x^{2} and -x^{2} to get 0.
-3x=3+2
Add 2 to both sides.
-3x=5
Add 3 and 2 to get 5.
x=\frac{5}{-3}
Divide both sides by -3.
x=-\frac{5}{3}
Fraction \frac{5}{-3} can be rewritten as -\frac{5}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}