Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x\left(x-1\right)+\left(4x+4\right)\times 3=x\left(x+1\right)
Variable x cannot be equal to any of the values -1,0 since division by zero is not defined. Multiply both sides of the equation by 4x\left(x+1\right), the least common multiple of x+1,x,4.
4x^{2}-4x+\left(4x+4\right)\times 3=x\left(x+1\right)
Use the distributive property to multiply 4x by x-1.
4x^{2}-4x+12x+12=x\left(x+1\right)
Use the distributive property to multiply 4x+4 by 3.
4x^{2}+8x+12=x\left(x+1\right)
Combine -4x and 12x to get 8x.
4x^{2}+8x+12=x^{2}+x
Use the distributive property to multiply x by x+1.
4x^{2}+8x+12-x^{2}=x
Subtract x^{2} from both sides.
3x^{2}+8x+12=x
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+8x+12-x=0
Subtract x from both sides.
3x^{2}+7x+12=0
Combine 8x and -x to get 7x.
x=\frac{-7±\sqrt{7^{2}-4\times 3\times 12}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 7 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 3\times 12}}{2\times 3}
Square 7.
x=\frac{-7±\sqrt{49-12\times 12}}{2\times 3}
Multiply -4 times 3.
x=\frac{-7±\sqrt{49-144}}{2\times 3}
Multiply -12 times 12.
x=\frac{-7±\sqrt{-95}}{2\times 3}
Add 49 to -144.
x=\frac{-7±\sqrt{95}i}{2\times 3}
Take the square root of -95.
x=\frac{-7±\sqrt{95}i}{6}
Multiply 2 times 3.
x=\frac{-7+\sqrt{95}i}{6}
Now solve the equation x=\frac{-7±\sqrt{95}i}{6} when ± is plus. Add -7 to i\sqrt{95}.
x=\frac{-\sqrt{95}i-7}{6}
Now solve the equation x=\frac{-7±\sqrt{95}i}{6} when ± is minus. Subtract i\sqrt{95} from -7.
x=\frac{-7+\sqrt{95}i}{6} x=\frac{-\sqrt{95}i-7}{6}
The equation is now solved.
4x\left(x-1\right)+\left(4x+4\right)\times 3=x\left(x+1\right)
Variable x cannot be equal to any of the values -1,0 since division by zero is not defined. Multiply both sides of the equation by 4x\left(x+1\right), the least common multiple of x+1,x,4.
4x^{2}-4x+\left(4x+4\right)\times 3=x\left(x+1\right)
Use the distributive property to multiply 4x by x-1.
4x^{2}-4x+12x+12=x\left(x+1\right)
Use the distributive property to multiply 4x+4 by 3.
4x^{2}+8x+12=x\left(x+1\right)
Combine -4x and 12x to get 8x.
4x^{2}+8x+12=x^{2}+x
Use the distributive property to multiply x by x+1.
4x^{2}+8x+12-x^{2}=x
Subtract x^{2} from both sides.
3x^{2}+8x+12=x
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+8x+12-x=0
Subtract x from both sides.
3x^{2}+7x+12=0
Combine 8x and -x to get 7x.
3x^{2}+7x=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
\frac{3x^{2}+7x}{3}=-\frac{12}{3}
Divide both sides by 3.
x^{2}+\frac{7}{3}x=-\frac{12}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{7}{3}x=-4
Divide -12 by 3.
x^{2}+\frac{7}{3}x+\left(\frac{7}{6}\right)^{2}=-4+\left(\frac{7}{6}\right)^{2}
Divide \frac{7}{3}, the coefficient of the x term, by 2 to get \frac{7}{6}. Then add the square of \frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{3}x+\frac{49}{36}=-4+\frac{49}{36}
Square \frac{7}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{3}x+\frac{49}{36}=-\frac{95}{36}
Add -4 to \frac{49}{36}.
\left(x+\frac{7}{6}\right)^{2}=-\frac{95}{36}
Factor x^{2}+\frac{7}{3}x+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{-\frac{95}{36}}
Take the square root of both sides of the equation.
x+\frac{7}{6}=\frac{\sqrt{95}i}{6} x+\frac{7}{6}=-\frac{\sqrt{95}i}{6}
Simplify.
x=\frac{-7+\sqrt{95}i}{6} x=\frac{-\sqrt{95}i-7}{6}
Subtract \frac{7}{6} from both sides of the equation.