Evaluate
\frac{x}{6}-\frac{11a}{3b}-\frac{1}{6}
Expand
\frac{x}{6}-\frac{11a}{3b}-\frac{1}{6}
Graph
Quiz
Algebra
5 problems similar to:
\frac { x - 1 } { 6 } - \frac { 8 a } { 2 b } + \frac { a } { 3 b }
Share
Copied to clipboard
\frac{x-1}{6}-\frac{4a}{b}+\frac{a}{3b}
Cancel out 2 in both numerator and denominator.
\frac{\left(x-1\right)b}{6b}-\frac{6\times 4a}{6b}+\frac{a}{3b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and b is 6b. Multiply \frac{x-1}{6} times \frac{b}{b}. Multiply \frac{4a}{b} times \frac{6}{6}.
\frac{\left(x-1\right)b-6\times 4a}{6b}+\frac{a}{3b}
Since \frac{\left(x-1\right)b}{6b} and \frac{6\times 4a}{6b} have the same denominator, subtract them by subtracting their numerators.
\frac{xb-b-24a}{6b}+\frac{a}{3b}
Do the multiplications in \left(x-1\right)b-6\times 4a.
\frac{xb-b-24a}{6b}+\frac{2a}{6b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6b and 3b is 6b. Multiply \frac{a}{3b} times \frac{2}{2}.
\frac{xb-b-24a+2a}{6b}
Since \frac{xb-b-24a}{6b} and \frac{2a}{6b} have the same denominator, add them by adding their numerators.
\frac{xb-b-22a}{6b}
Combine like terms in xb-b-24a+2a.
\frac{x-1}{6}-\frac{4a}{b}+\frac{a}{3b}
Cancel out 2 in both numerator and denominator.
\frac{\left(x-1\right)b}{6b}-\frac{6\times 4a}{6b}+\frac{a}{3b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and b is 6b. Multiply \frac{x-1}{6} times \frac{b}{b}. Multiply \frac{4a}{b} times \frac{6}{6}.
\frac{\left(x-1\right)b-6\times 4a}{6b}+\frac{a}{3b}
Since \frac{\left(x-1\right)b}{6b} and \frac{6\times 4a}{6b} have the same denominator, subtract them by subtracting their numerators.
\frac{xb-b-24a}{6b}+\frac{a}{3b}
Do the multiplications in \left(x-1\right)b-6\times 4a.
\frac{xb-b-24a}{6b}+\frac{2a}{6b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6b and 3b is 6b. Multiply \frac{a}{3b} times \frac{2}{2}.
\frac{xb-b-24a+2a}{6b}
Since \frac{xb-b-24a}{6b} and \frac{2a}{6b} have the same denominator, add them by adding their numerators.
\frac{xb-b-22a}{6b}
Combine like terms in xb-b-24a+2a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}