Solve for x
x>-2
Graph
Share
Copied to clipboard
3\left(x-1\right)-2\left(x+1\right)<4x+1
Multiply both sides of the equation by 6, the least common multiple of 2,3,6. Since 6 is positive, the inequality direction remains the same.
3x-3-2\left(x+1\right)<4x+1
Use the distributive property to multiply 3 by x-1.
3x-3-2x-2<4x+1
Use the distributive property to multiply -2 by x+1.
x-3-2<4x+1
Combine 3x and -2x to get x.
x-5<4x+1
Subtract 2 from -3 to get -5.
x-5-4x<1
Subtract 4x from both sides.
-3x-5<1
Combine x and -4x to get -3x.
-3x<1+5
Add 5 to both sides.
-3x<6
Add 1 and 5 to get 6.
x>\frac{6}{-3}
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
x>-2
Divide 6 by -3 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}