Solve for x
x = -\frac{11}{2} = -5\frac{1}{2} = -5.5
Graph
Share
Copied to clipboard
6\left(x-1\right)-2\left(3x-2\right)=4\left(x-4\right)-3\left(2x-1\right)
Multiply both sides of the equation by 12, the least common multiple of 2,6,3,4.
6x-6-2\left(3x-2\right)=4\left(x-4\right)-3\left(2x-1\right)
Use the distributive property to multiply 6 by x-1.
6x-6-6x+4=4\left(x-4\right)-3\left(2x-1\right)
Use the distributive property to multiply -2 by 3x-2.
-6+4=4\left(x-4\right)-3\left(2x-1\right)
Combine 6x and -6x to get 0.
-2=4\left(x-4\right)-3\left(2x-1\right)
Add -6 and 4 to get -2.
-2=4x-16-3\left(2x-1\right)
Use the distributive property to multiply 4 by x-4.
-2=4x-16-6x+3
Use the distributive property to multiply -3 by 2x-1.
-2=-2x-16+3
Combine 4x and -6x to get -2x.
-2=-2x-13
Add -16 and 3 to get -13.
-2x-13=-2
Swap sides so that all variable terms are on the left hand side.
-2x=-2+13
Add 13 to both sides.
-2x=11
Add -2 and 13 to get 11.
x=\frac{11}{-2}
Divide both sides by -2.
x=-\frac{11}{2}
Fraction \frac{11}{-2} can be rewritten as -\frac{11}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}