Solve for x
x<-7
Graph
Share
Copied to clipboard
3\left(x-1\right)-2\left(2x-1\right)>6
Multiply both sides of the equation by 6, the least common multiple of 2,3. Since 6 is positive, the inequality direction remains the same.
3x-3-2\left(2x-1\right)>6
Use the distributive property to multiply 3 by x-1.
3x-3-4x+2>6
Use the distributive property to multiply -2 by 2x-1.
-x-3+2>6
Combine 3x and -4x to get -x.
-x-1>6
Add -3 and 2 to get -1.
-x>6+1
Add 1 to both sides.
-x>7
Add 6 and 1 to get 7.
x<-7
Divide both sides by -1. Since -1 is negative, the inequality direction is changed.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}