Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+2}{-3-\left(-2\right)}=\frac{y-1}{-1-1}
The opposite of -2 is 2.
\frac{x+2}{-3+2}=\frac{y-1}{-1-1}
The opposite of -2 is 2.
\frac{x+2}{-1}=\frac{y-1}{-1-1}
Add -3 and 2 to get -1.
-x-2=\frac{y-1}{-1-1}
Anything divided by -1 gives its opposite. To find the opposite of x+2, find the opposite of each term.
-x-2=\frac{y-1}{-2}
Subtract 1 from -1 to get -2.
-x-2=\frac{-y+1}{2}
Multiply both numerator and denominator by -1.
-x-2=-\frac{1}{2}y+\frac{1}{2}
Divide each term of -y+1 by 2 to get -\frac{1}{2}y+\frac{1}{2}.
-x=-\frac{1}{2}y+\frac{1}{2}+2
Add 2 to both sides.
-x=-\frac{1}{2}y+\frac{5}{2}
Add \frac{1}{2} and 2 to get \frac{5}{2}.
-x=\frac{5-y}{2}
The equation is in standard form.
\frac{-x}{-1}=\frac{5-y}{-2}
Divide both sides by -1.
x=\frac{5-y}{-2}
Dividing by -1 undoes the multiplication by -1.
x=\frac{y-5}{2}
Divide \frac{-y+5}{2} by -1.
\frac{x+2}{-3-\left(-2\right)}=\frac{y-1}{-1-1}
The opposite of -2 is 2.
\frac{x+2}{-3+2}=\frac{y-1}{-1-1}
The opposite of -2 is 2.
\frac{x+2}{-1}=\frac{y-1}{-1-1}
Add -3 and 2 to get -1.
-x-2=\frac{y-1}{-1-1}
Anything divided by -1 gives its opposite. To find the opposite of x+2, find the opposite of each term.
-x-2=\frac{y-1}{-2}
Subtract 1 from -1 to get -2.
-x-2=\frac{-y+1}{2}
Multiply both numerator and denominator by -1.
-x-2=-\frac{1}{2}y+\frac{1}{2}
Divide each term of -y+1 by 2 to get -\frac{1}{2}y+\frac{1}{2}.
-\frac{1}{2}y+\frac{1}{2}=-x-2
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{2}y=-x-2-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
-\frac{1}{2}y=-x-\frac{5}{2}
Subtract \frac{1}{2} from -2 to get -\frac{5}{2}.
\frac{-\frac{1}{2}y}{-\frac{1}{2}}=\frac{-x-\frac{5}{2}}{-\frac{1}{2}}
Multiply both sides by -2.
y=\frac{-x-\frac{5}{2}}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
y=2x+5
Divide -x-\frac{5}{2} by -\frac{1}{2} by multiplying -x-\frac{5}{2} by the reciprocal of -\frac{1}{2}.