Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{x^{2}+xy}{\left(x-y\right)^{2}}\times \frac{2x}{x+y}-1
Use the distributive property to multiply x by x+y.
\frac{\left(x^{2}+xy\right)\times 2x}{\left(x-y\right)^{2}\left(x+y\right)}-1
Multiply \frac{x^{2}+xy}{\left(x-y\right)^{2}} times \frac{2x}{x+y} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}+xy\right)\times 2x}{\left(x-y\right)^{2}\left(x+y\right)}-\frac{\left(x-y\right)^{2}\left(x+y\right)}{\left(x-y\right)^{2}\left(x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-y\right)^{2}\left(x+y\right)}{\left(x-y\right)^{2}\left(x+y\right)}.
\frac{\left(x^{2}+xy\right)\times 2x-\left(x-y\right)^{2}\left(x+y\right)}{\left(x-y\right)^{2}\left(x+y\right)}
Since \frac{\left(x^{2}+xy\right)\times 2x}{\left(x-y\right)^{2}\left(x+y\right)} and \frac{\left(x-y\right)^{2}\left(x+y\right)}{\left(x-y\right)^{2}\left(x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{3}+2x^{2}y-x^{3}-x^{2}y+2x^{2}y+2xy^{2}-y^{2}x-y^{3}}{\left(x-y\right)^{2}\left(x+y\right)}
Do the multiplications in \left(x^{2}+xy\right)\times 2x-\left(x-y\right)^{2}\left(x+y\right).
\frac{x^{3}+xy^{2}+3x^{2}y-y^{3}}{\left(x-y\right)^{2}\left(x+y\right)}
Combine like terms in 2x^{3}+2x^{2}y-x^{3}-x^{2}y+2x^{2}y+2xy^{2}-y^{2}x-y^{3}.
\frac{\left(x+y\right)\left(x^{2}+2xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)^{2}}
Factor the expressions that are not already factored in \frac{x^{3}+xy^{2}+3x^{2}y-y^{3}}{\left(x-y\right)^{2}\left(x+y\right)}.
\frac{x^{2}+2xy-y^{2}}{\left(x-y\right)^{2}}
Cancel out x+y in both numerator and denominator.
\frac{x^{2}+2xy-y^{2}}{x^{2}-2xy+y^{2}}
Expand \left(x-y\right)^{2}.
\frac{x^{2}+xy}{\left(x-y\right)^{2}}\times \frac{2x}{x+y}-1
Use the distributive property to multiply x by x+y.
\frac{\left(x^{2}+xy\right)\times 2x}{\left(x-y\right)^{2}\left(x+y\right)}-1
Multiply \frac{x^{2}+xy}{\left(x-y\right)^{2}} times \frac{2x}{x+y} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}+xy\right)\times 2x}{\left(x-y\right)^{2}\left(x+y\right)}-\frac{\left(x-y\right)^{2}\left(x+y\right)}{\left(x-y\right)^{2}\left(x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-y\right)^{2}\left(x+y\right)}{\left(x-y\right)^{2}\left(x+y\right)}.
\frac{\left(x^{2}+xy\right)\times 2x-\left(x-y\right)^{2}\left(x+y\right)}{\left(x-y\right)^{2}\left(x+y\right)}
Since \frac{\left(x^{2}+xy\right)\times 2x}{\left(x-y\right)^{2}\left(x+y\right)} and \frac{\left(x-y\right)^{2}\left(x+y\right)}{\left(x-y\right)^{2}\left(x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{3}+2x^{2}y-x^{3}-x^{2}y+2x^{2}y+2xy^{2}-y^{2}x-y^{3}}{\left(x-y\right)^{2}\left(x+y\right)}
Do the multiplications in \left(x^{2}+xy\right)\times 2x-\left(x-y\right)^{2}\left(x+y\right).
\frac{x^{3}+xy^{2}+3x^{2}y-y^{3}}{\left(x-y\right)^{2}\left(x+y\right)}
Combine like terms in 2x^{3}+2x^{2}y-x^{3}-x^{2}y+2x^{2}y+2xy^{2}-y^{2}x-y^{3}.
\frac{\left(x+y\right)\left(x^{2}+2xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)^{2}}
Factor the expressions that are not already factored in \frac{x^{3}+xy^{2}+3x^{2}y-y^{3}}{\left(x-y\right)^{2}\left(x+y\right)}.
\frac{x^{2}+2xy-y^{2}}{\left(x-y\right)^{2}}
Cancel out x+y in both numerator and denominator.
\frac{x^{2}+2xy-y^{2}}{x^{2}-2xy+y^{2}}
Expand \left(x-y\right)^{2}.