Evaluate
\frac{x^{2}+2xy-y^{2}}{\left(x-y\right)^{2}}
Expand
\frac{x^{2}+2xy-y^{2}}{\left(x-y\right)^{2}}
Share
Copied to clipboard
\frac{x^{2}+xy}{\left(x-y\right)^{2}}\times \frac{2x}{x+y}-1
Use the distributive property to multiply x by x+y.
\frac{\left(x^{2}+xy\right)\times 2x}{\left(x-y\right)^{2}\left(x+y\right)}-1
Multiply \frac{x^{2}+xy}{\left(x-y\right)^{2}} times \frac{2x}{x+y} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}+xy\right)\times 2x}{\left(x-y\right)^{2}\left(x+y\right)}-\frac{\left(x-y\right)^{2}\left(x+y\right)}{\left(x-y\right)^{2}\left(x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-y\right)^{2}\left(x+y\right)}{\left(x-y\right)^{2}\left(x+y\right)}.
\frac{\left(x^{2}+xy\right)\times 2x-\left(x-y\right)^{2}\left(x+y\right)}{\left(x-y\right)^{2}\left(x+y\right)}
Since \frac{\left(x^{2}+xy\right)\times 2x}{\left(x-y\right)^{2}\left(x+y\right)} and \frac{\left(x-y\right)^{2}\left(x+y\right)}{\left(x-y\right)^{2}\left(x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{3}+2x^{2}y-x^{3}-x^{2}y+2x^{2}y+2xy^{2}-y^{2}x-y^{3}}{\left(x-y\right)^{2}\left(x+y\right)}
Do the multiplications in \left(x^{2}+xy\right)\times 2x-\left(x-y\right)^{2}\left(x+y\right).
\frac{x^{3}+xy^{2}+3x^{2}y-y^{3}}{\left(x-y\right)^{2}\left(x+y\right)}
Combine like terms in 2x^{3}+2x^{2}y-x^{3}-x^{2}y+2x^{2}y+2xy^{2}-y^{2}x-y^{3}.
\frac{\left(x+y\right)\left(x^{2}+2xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)^{2}}
Factor the expressions that are not already factored in \frac{x^{3}+xy^{2}+3x^{2}y-y^{3}}{\left(x-y\right)^{2}\left(x+y\right)}.
\frac{x^{2}+2xy-y^{2}}{\left(x-y\right)^{2}}
Cancel out x+y in both numerator and denominator.
\frac{x^{2}+2xy-y^{2}}{x^{2}-2xy+y^{2}}
Expand \left(x-y\right)^{2}.
\frac{x^{2}+xy}{\left(x-y\right)^{2}}\times \frac{2x}{x+y}-1
Use the distributive property to multiply x by x+y.
\frac{\left(x^{2}+xy\right)\times 2x}{\left(x-y\right)^{2}\left(x+y\right)}-1
Multiply \frac{x^{2}+xy}{\left(x-y\right)^{2}} times \frac{2x}{x+y} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}+xy\right)\times 2x}{\left(x-y\right)^{2}\left(x+y\right)}-\frac{\left(x-y\right)^{2}\left(x+y\right)}{\left(x-y\right)^{2}\left(x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-y\right)^{2}\left(x+y\right)}{\left(x-y\right)^{2}\left(x+y\right)}.
\frac{\left(x^{2}+xy\right)\times 2x-\left(x-y\right)^{2}\left(x+y\right)}{\left(x-y\right)^{2}\left(x+y\right)}
Since \frac{\left(x^{2}+xy\right)\times 2x}{\left(x-y\right)^{2}\left(x+y\right)} and \frac{\left(x-y\right)^{2}\left(x+y\right)}{\left(x-y\right)^{2}\left(x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{3}+2x^{2}y-x^{3}-x^{2}y+2x^{2}y+2xy^{2}-y^{2}x-y^{3}}{\left(x-y\right)^{2}\left(x+y\right)}
Do the multiplications in \left(x^{2}+xy\right)\times 2x-\left(x-y\right)^{2}\left(x+y\right).
\frac{x^{3}+xy^{2}+3x^{2}y-y^{3}}{\left(x-y\right)^{2}\left(x+y\right)}
Combine like terms in 2x^{3}+2x^{2}y-x^{3}-x^{2}y+2x^{2}y+2xy^{2}-y^{2}x-y^{3}.
\frac{\left(x+y\right)\left(x^{2}+2xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)^{2}}
Factor the expressions that are not already factored in \frac{x^{3}+xy^{2}+3x^{2}y-y^{3}}{\left(x-y\right)^{2}\left(x+y\right)}.
\frac{x^{2}+2xy-y^{2}}{\left(x-y\right)^{2}}
Cancel out x+y in both numerator and denominator.
\frac{x^{2}+2xy-y^{2}}{x^{2}-2xy+y^{2}}
Expand \left(x-y\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}