Solve for x
x=\frac{\left(\sqrt{5}+1\right)y}{2}
y\neq 0
Solve for y
y=\frac{\left(\sqrt{5}-1\right)x}{2}
x\neq 0
Graph
Share
Copied to clipboard
2x=y\left(1+\sqrt{5}\right)
Multiply both sides of the equation by 2y, the least common multiple of y,2.
2x=y+y\sqrt{5}
Use the distributive property to multiply y by 1+\sqrt{5}.
2x=\sqrt{5}y+y
The equation is in standard form.
\frac{2x}{2}=\frac{\sqrt{5}y+y}{2}
Divide both sides by 2.
x=\frac{\sqrt{5}y+y}{2}
Dividing by 2 undoes the multiplication by 2.
x=\frac{\left(\sqrt{5}+1\right)y}{2}
Divide y+y\sqrt{5} by 2.
2x=y\left(1+\sqrt{5}\right)
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2y, the least common multiple of y,2.
2x=y+y\sqrt{5}
Use the distributive property to multiply y by 1+\sqrt{5}.
y+y\sqrt{5}=2x
Swap sides so that all variable terms are on the left hand side.
\left(1+\sqrt{5}\right)y=2x
Combine all terms containing y.
\left(\sqrt{5}+1\right)y=2x
The equation is in standard form.
\frac{\left(\sqrt{5}+1\right)y}{\sqrt{5}+1}=\frac{2x}{\sqrt{5}+1}
Divide both sides by 1+\sqrt{5}.
y=\frac{2x}{\sqrt{5}+1}
Dividing by 1+\sqrt{5} undoes the multiplication by 1+\sqrt{5}.
y=\frac{\left(\sqrt{5}-1\right)x}{2}
Divide 2x by 1+\sqrt{5}.
y=\frac{\left(\sqrt{5}-1\right)x}{2}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}