Evaluate
\frac{36-6x+hx-x^{2}}{\left(x-6\right)\left(h-x\right)}
Differentiate w.r.t. x
\frac{6\left(-2x^{2}+2hx+12x-h^{2}-36\right)}{\left(\left(x-6\right)\left(h-x\right)\right)^{2}}
Graph
Share
Copied to clipboard
\frac{x\left(-x+h\right)}{\left(x-6\right)\left(-x+h\right)}-\frac{6\left(x-6\right)}{\left(x-6\right)\left(-x+h\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-6 and h-x is \left(x-6\right)\left(-x+h\right). Multiply \frac{x}{x-6} times \frac{-x+h}{-x+h}. Multiply \frac{6}{h-x} times \frac{x-6}{x-6}.
\frac{x\left(-x+h\right)-6\left(x-6\right)}{\left(x-6\right)\left(-x+h\right)}
Since \frac{x\left(-x+h\right)}{\left(x-6\right)\left(-x+h\right)} and \frac{6\left(x-6\right)}{\left(x-6\right)\left(-x+h\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}+xh-6x+36}{\left(x-6\right)\left(-x+h\right)}
Do the multiplications in x\left(-x+h\right)-6\left(x-6\right).
\frac{-x^{2}+xh-6x+36}{-x^{2}+hx+6x-6h}
Expand \left(x-6\right)\left(-x+h\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}