Solve for m
m=-\frac{2x\left(4-x\right)}{x-2}
x\neq 2\text{ and }x\neq 0
Solve for x
\left\{\begin{matrix}\\x=\frac{\sqrt{m^{2}+64}+m+8}{4}\text{, }&\text{unconditionally}\\x=\frac{-\sqrt{m^{2}+64}+m+8}{4}\text{, }&m\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
2xx=2x\left(x-2\right)\times 2-\left(x-2\right)m
Multiply both sides of the equation by 2x\left(x-2\right), the least common multiple of x-2,2x.
2x^{2}=2x\left(x-2\right)\times 2-\left(x-2\right)m
Multiply x and x to get x^{2}.
2x^{2}=4x\left(x-2\right)-\left(x-2\right)m
Multiply 2 and 2 to get 4.
2x^{2}=4x^{2}-8x-\left(x-2\right)m
Use the distributive property to multiply 4x by x-2.
2x^{2}=4x^{2}-8x-\left(xm-2m\right)
Use the distributive property to multiply x-2 by m.
2x^{2}=4x^{2}-8x-xm+2m
To find the opposite of xm-2m, find the opposite of each term.
4x^{2}-8x-xm+2m=2x^{2}
Swap sides so that all variable terms are on the left hand side.
-8x-xm+2m=2x^{2}-4x^{2}
Subtract 4x^{2} from both sides.
-8x-xm+2m=-2x^{2}
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
-xm+2m=-2x^{2}+8x
Add 8x to both sides.
\left(-x+2\right)m=-2x^{2}+8x
Combine all terms containing m.
\left(2-x\right)m=8x-2x^{2}
The equation is in standard form.
\frac{\left(2-x\right)m}{2-x}=\frac{2x\left(4-x\right)}{2-x}
Divide both sides by -x+2.
m=\frac{2x\left(4-x\right)}{2-x}
Dividing by -x+2 undoes the multiplication by -x+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}