Solve for a
a=\frac{56x}{3}-18
x\neq 1
Solve for x
x=\frac{3\left(a+18\right)}{56}
a\neq \frac{2}{3}
Graph
Share
Copied to clipboard
2x=3a+2\left(x-1\right)\left(-27\right)
Multiply both sides of the equation by 2\left(x-1\right), the least common multiple of x-1,2x-2.
2x=3a-54\left(x-1\right)
Multiply 2 and -27 to get -54.
2x=3a-54x+54
Use the distributive property to multiply -54 by x-1.
3a-54x+54=2x
Swap sides so that all variable terms are on the left hand side.
3a+54=2x+54x
Add 54x to both sides.
3a+54=56x
Combine 2x and 54x to get 56x.
3a=56x-54
Subtract 54 from both sides.
\frac{3a}{3}=\frac{56x-54}{3}
Divide both sides by 3.
a=\frac{56x-54}{3}
Dividing by 3 undoes the multiplication by 3.
a=\frac{56x}{3}-18
Divide 56x-54 by 3.
2x=3a+2\left(x-1\right)\left(-27\right)
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-1\right), the least common multiple of x-1,2x-2.
2x=3a-54\left(x-1\right)
Multiply 2 and -27 to get -54.
2x=3a-54x+54
Use the distributive property to multiply -54 by x-1.
2x+54x=3a+54
Add 54x to both sides.
56x=3a+54
Combine 2x and 54x to get 56x.
\frac{56x}{56}=\frac{3a+54}{56}
Divide both sides by 56.
x=\frac{3a+54}{56}
Dividing by 56 undoes the multiplication by 56.
x=\frac{3a}{56}+\frac{27}{28}
Divide 54+3a by 56.
x=\frac{3a}{56}+\frac{27}{28}\text{, }x\neq 1
Variable x cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}