Solve for a (complex solution)
a=-\frac{i\left(-ib\sin(x)+4i\sin(x)+5ix\right)}{\sin(x)}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}
Solve for b (complex solution)
b=-\frac{i\left(-ia\sin(x)+4i\sin(x)+5ix\right)}{\sin(x)}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}
Solve for a
a=\frac{5x}{\sin(x)}-b+4
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}
Solve for b
b=\frac{5x}{\sin(x)}-a+4
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}
Graph
Share
Copied to clipboard
x+3x-bx=xa-x\left(SinI(x)\right)^{-1}\times 5x
Multiply both sides of the equation by x.
4x-bx=xa-x\left(SinI(x)\right)^{-1}\times 5x
Combine x and 3x to get 4x.
4x-bx=xa-x^{2}\left(SinI(x)\right)^{-1}\times 5
Multiply x and x to get x^{2}.
xa-x^{2}\left(SinI(x)\right)^{-1}\times 5=4x-bx
Swap sides so that all variable terms are on the left hand side.
xa=4x-bx+x^{2}\left(SinI(x)\right)^{-1}\times 5
Add x^{2}\left(SinI(x)\right)^{-1}\times 5 to both sides.
ax=x\left(5x\times \frac{1}{\sin(x)}-b+4\right)
Reorder the terms.
ax=x\left(\frac{5}{\sin(x)}x-b+4\right)
Express 5\times \frac{1}{\sin(x)} as a single fraction.
ax=\frac{5}{\sin(x)}x^{2}-xb+4x
Use the distributive property to multiply x by \frac{5}{\sin(x)}x-b+4.
ax=\frac{5x^{2}}{\sin(x)}-xb+4x
Express \frac{5}{\sin(x)}x^{2} as a single fraction.
ax=\frac{5x^{2}}{\sin(x)}+\frac{\left(-xb+4x\right)\sin(x)}{\sin(x)}
To add or subtract expressions, expand them to make their denominators the same. Multiply -xb+4x times \frac{\sin(x)}{\sin(x)}.
ax=\frac{5x^{2}+\left(-xb+4x\right)\sin(x)}{\sin(x)}
Since \frac{5x^{2}}{\sin(x)} and \frac{\left(-xb+4x\right)\sin(x)}{\sin(x)} have the same denominator, add them by adding their numerators.
ax=\frac{5x^{2}-xb\sin(x)+4x\sin(x)}{\sin(x)}
Use the distributive property to multiply -xb+4x by \sin(x).
xa=\frac{-bx\sin(x)+4x\sin(x)+5x^{2}}{\sin(x)}
The equation is in standard form.
\frac{xa}{x}=\frac{x\left(\frac{5x}{\sin(x)}-b+4\right)}{x}
Divide both sides by x.
a=\frac{x\left(\frac{5x}{\sin(x)}-b+4\right)}{x}
Dividing by x undoes the multiplication by x.
a=\frac{5x}{\sin(x)}-b+4
Divide x\left(-b+\frac{5x}{\sin(x)}+4\right) by x.
x+3x-bx=xa-x\left(SinI(x)\right)^{-1}\times 5x
Multiply both sides of the equation by x.
4x-bx=xa-x\left(SinI(x)\right)^{-1}\times 5x
Combine x and 3x to get 4x.
4x-bx=xa-x^{2}\left(SinI(x)\right)^{-1}\times 5
Multiply x and x to get x^{2}.
-bx=xa-x^{2}\left(SinI(x)\right)^{-1}\times 5-4x
Subtract 4x from both sides.
-bx=-5x^{2}\times \frac{1}{\sin(x)}+ax-4x
Reorder the terms.
-bx=\frac{-5}{\sin(x)}x^{2}+ax-4x
Express -5\times \frac{1}{\sin(x)} as a single fraction.
-bx=\frac{-5x^{2}}{\sin(x)}+ax-4x
Express \frac{-5}{\sin(x)}x^{2} as a single fraction.
-bx=\frac{-5x^{2}}{\sin(x)}+\frac{\left(ax-4x\right)\sin(x)}{\sin(x)}
To add or subtract expressions, expand them to make their denominators the same. Multiply ax-4x times \frac{\sin(x)}{\sin(x)}.
-bx=\frac{-5x^{2}+\left(ax-4x\right)\sin(x)}{\sin(x)}
Since \frac{-5x^{2}}{\sin(x)} and \frac{\left(ax-4x\right)\sin(x)}{\sin(x)} have the same denominator, add them by adding their numerators.
-bx=\frac{-5x^{2}+ax\sin(x)-4x\sin(x)}{\sin(x)}
Use the distributive property to multiply ax-4x by \sin(x).
\left(-x\right)b=\frac{ax\sin(x)-4x\sin(x)-5x^{2}}{\sin(x)}
The equation is in standard form.
\frac{\left(-x\right)b}{-x}=\frac{x\left(-\frac{5x}{\sin(x)}+a-4\right)}{-x}
Divide both sides by -x.
b=\frac{x\left(-\frac{5x}{\sin(x)}+a-4\right)}{-x}
Dividing by -x undoes the multiplication by -x.
b=\frac{5x}{\sin(x)}-a+4
Divide x\left(a-\frac{5x}{\sin(x)}-4\right) by -x.
x+3x-bx=xa-x\left(SinI(x)\right)^{-1}\times 5x
Multiply both sides of the equation by x.
4x-bx=xa-x\left(SinI(x)\right)^{-1}\times 5x
Combine x and 3x to get 4x.
4x-bx=xa-x^{2}\left(SinI(x)\right)^{-1}\times 5
Multiply x and x to get x^{2}.
xa-x^{2}\left(SinI(x)\right)^{-1}\times 5=4x-bx
Swap sides so that all variable terms are on the left hand side.
xa=4x-bx+x^{2}\left(SinI(x)\right)^{-1}\times 5
Add x^{2}\left(SinI(x)\right)^{-1}\times 5 to both sides.
ax=x\left(5x\times \frac{1}{\sin(x)}-b+4\right)
Reorder the terms.
ax=x\left(\frac{5}{\sin(x)}x-b+4\right)
Express 5\times \frac{1}{\sin(x)} as a single fraction.
ax=\frac{5}{\sin(x)}x^{2}-xb+4x
Use the distributive property to multiply x by \frac{5}{\sin(x)}x-b+4.
ax=\frac{5x^{2}}{\sin(x)}-xb+4x
Express \frac{5}{\sin(x)}x^{2} as a single fraction.
ax=\frac{5x^{2}}{\sin(x)}+\frac{\left(-xb+4x\right)\sin(x)}{\sin(x)}
To add or subtract expressions, expand them to make their denominators the same. Multiply -xb+4x times \frac{\sin(x)}{\sin(x)}.
ax=\frac{5x^{2}+\left(-xb+4x\right)\sin(x)}{\sin(x)}
Since \frac{5x^{2}}{\sin(x)} and \frac{\left(-xb+4x\right)\sin(x)}{\sin(x)} have the same denominator, add them by adding their numerators.
ax=\frac{5x^{2}-xb\sin(x)+4x\sin(x)}{\sin(x)}
Use the distributive property to multiply -xb+4x by \sin(x).
xa=\frac{-bx\sin(x)+4x\sin(x)+5x^{2}}{\sin(x)}
The equation is in standard form.
\frac{xa}{x}=\frac{x\left(\frac{5x}{\sin(x)}-b+4\right)}{x}
Divide both sides by x.
a=\frac{x\left(\frac{5x}{\sin(x)}-b+4\right)}{x}
Dividing by x undoes the multiplication by x.
a=\frac{5x}{\sin(x)}-b+4
Divide x\left(-b+\frac{5x}{\sin(x)}+4\right) by x.
x+3x-bx=xa-x\left(SinI(x)\right)^{-1}\times 5x
Multiply both sides of the equation by x.
4x-bx=xa-x\left(SinI(x)\right)^{-1}\times 5x
Combine x and 3x to get 4x.
4x-bx=xa-x^{2}\left(SinI(x)\right)^{-1}\times 5
Multiply x and x to get x^{2}.
-bx=xa-x^{2}\left(SinI(x)\right)^{-1}\times 5-4x
Subtract 4x from both sides.
-bx=-5x^{2}\times \frac{1}{\sin(x)}+ax-4x
Reorder the terms.
-bx=\frac{-5}{\sin(x)}x^{2}+ax-4x
Express -5\times \frac{1}{\sin(x)} as a single fraction.
-bx=\frac{-5x^{2}}{\sin(x)}+ax-4x
Express \frac{-5}{\sin(x)}x^{2} as a single fraction.
-bx=\frac{-5x^{2}}{\sin(x)}+\frac{\left(ax-4x\right)\sin(x)}{\sin(x)}
To add or subtract expressions, expand them to make their denominators the same. Multiply ax-4x times \frac{\sin(x)}{\sin(x)}.
-bx=\frac{-5x^{2}+\left(ax-4x\right)\sin(x)}{\sin(x)}
Since \frac{-5x^{2}}{\sin(x)} and \frac{\left(ax-4x\right)\sin(x)}{\sin(x)} have the same denominator, add them by adding their numerators.
-bx=\frac{-5x^{2}+ax\sin(x)-4x\sin(x)}{\sin(x)}
Use the distributive property to multiply ax-4x by \sin(x).
\left(-x\right)b=\frac{ax\sin(x)-4x\sin(x)-5x^{2}}{\sin(x)}
The equation is in standard form.
\frac{\left(-x\right)b}{-x}=\frac{x\left(-\frac{5x}{\sin(x)}+a-4\right)}{-x}
Divide both sides by -x.
b=\frac{x\left(-\frac{5x}{\sin(x)}+a-4\right)}{-x}
Dividing by -x undoes the multiplication by -x.
b=\frac{5x}{\sin(x)}-a+4
Divide x\left(a-\frac{5x}{\sin(x)}-4\right) by -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}