Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{x+1}{3\left(x+2\right)}
Factor x^{2}-4. Factor 3x+6.
\frac{3x}{3\left(x-2\right)\left(x+2\right)}+\frac{\left(x+1\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and 3\left(x+2\right) is 3\left(x-2\right)\left(x+2\right). Multiply \frac{x}{\left(x-2\right)\left(x+2\right)} times \frac{3}{3}. Multiply \frac{x+1}{3\left(x+2\right)} times \frac{x-2}{x-2}.
\frac{3x+\left(x+1\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)}
Since \frac{3x}{3\left(x-2\right)\left(x+2\right)} and \frac{\left(x+1\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{3x+x^{2}-2x+x-2}{3\left(x-2\right)\left(x+2\right)}
Do the multiplications in 3x+\left(x+1\right)\left(x-2\right).
\frac{2x+x^{2}-2}{3\left(x-2\right)\left(x+2\right)}
Combine like terms in 3x+x^{2}-2x+x-2.
\frac{2x+x^{2}-2}{3x^{2}-12}
Expand 3\left(x-2\right)\left(x+2\right).
\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{x+1}{3\left(x+2\right)}
Factor x^{2}-4. Factor 3x+6.
\frac{3x}{3\left(x-2\right)\left(x+2\right)}+\frac{\left(x+1\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and 3\left(x+2\right) is 3\left(x-2\right)\left(x+2\right). Multiply \frac{x}{\left(x-2\right)\left(x+2\right)} times \frac{3}{3}. Multiply \frac{x+1}{3\left(x+2\right)} times \frac{x-2}{x-2}.
\frac{3x+\left(x+1\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)}
Since \frac{3x}{3\left(x-2\right)\left(x+2\right)} and \frac{\left(x+1\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{3x+x^{2}-2x+x-2}{3\left(x-2\right)\left(x+2\right)}
Do the multiplications in 3x+\left(x+1\right)\left(x-2\right).
\frac{2x+x^{2}-2}{3\left(x-2\right)\left(x+2\right)}
Combine like terms in 3x+x^{2}-2x+x-2.
\frac{2x+x^{2}-2}{3x^{2}-12}
Expand 3\left(x-2\right)\left(x+2\right).