Solve for x
x=-\frac{1}{6}\approx -0.166666667
Graph
Share
Copied to clipboard
\left(x+2\right)x+\left(x-1\right)\left(x+1\right)=\left(x+4\right)\times 2x
Variable x cannot be equal to any of the values -4,-2,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+2\right)\left(x+4\right), the least common multiple of x^{2}+3x-4,x^{2}+6x+8,x^{2}+x-2.
x^{2}+2x+\left(x-1\right)\left(x+1\right)=\left(x+4\right)\times 2x
Use the distributive property to multiply x+2 by x.
x^{2}+2x+x^{2}-1=\left(x+4\right)\times 2x
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
2x^{2}+2x-1=\left(x+4\right)\times 2x
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x-1=\left(2x+8\right)x
Use the distributive property to multiply x+4 by 2.
2x^{2}+2x-1=2x^{2}+8x
Use the distributive property to multiply 2x+8 by x.
2x^{2}+2x-1-2x^{2}=8x
Subtract 2x^{2} from both sides.
2x-1=8x
Combine 2x^{2} and -2x^{2} to get 0.
2x-1-8x=0
Subtract 8x from both sides.
-6x-1=0
Combine 2x and -8x to get -6x.
-6x=1
Add 1 to both sides. Anything plus zero gives itself.
x=\frac{1}{-6}
Divide both sides by -6.
x=-\frac{1}{6}
Fraction \frac{1}{-6} can be rewritten as -\frac{1}{6} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}