Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-6\right)x=72+\left(x-6\right)\left(x+6\right)\times 4
Variable x cannot be equal to any of the values -6,6 since division by zero is not defined. Multiply both sides of the equation by \left(x-6\right)\left(x+6\right), the least common multiple of x+6,x^{2}-36.
x^{2}-6x=72+\left(x-6\right)\left(x+6\right)\times 4
Use the distributive property to multiply x-6 by x.
x^{2}-6x=72+\left(x^{2}-36\right)\times 4
Use the distributive property to multiply x-6 by x+6 and combine like terms.
x^{2}-6x=72+4x^{2}-144
Use the distributive property to multiply x^{2}-36 by 4.
x^{2}-6x=-72+4x^{2}
Subtract 144 from 72 to get -72.
x^{2}-6x-\left(-72\right)=4x^{2}
Subtract -72 from both sides.
x^{2}-6x+72=4x^{2}
The opposite of -72 is 72.
x^{2}-6x+72-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}-6x+72=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-x^{2}-2x+24=0
Divide both sides by 3.
a+b=-2 ab=-24=-24
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+24. To find a and b, set up a system to be solved.
1,-24 2,-12 3,-8 4,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -24.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
Calculate the sum for each pair.
a=4 b=-6
The solution is the pair that gives sum -2.
\left(-x^{2}+4x\right)+\left(-6x+24\right)
Rewrite -x^{2}-2x+24 as \left(-x^{2}+4x\right)+\left(-6x+24\right).
x\left(-x+4\right)+6\left(-x+4\right)
Factor out x in the first and 6 in the second group.
\left(-x+4\right)\left(x+6\right)
Factor out common term -x+4 by using distributive property.
x=4 x=-6
To find equation solutions, solve -x+4=0 and x+6=0.
x=4
Variable x cannot be equal to -6.
\left(x-6\right)x=72+\left(x-6\right)\left(x+6\right)\times 4
Variable x cannot be equal to any of the values -6,6 since division by zero is not defined. Multiply both sides of the equation by \left(x-6\right)\left(x+6\right), the least common multiple of x+6,x^{2}-36.
x^{2}-6x=72+\left(x-6\right)\left(x+6\right)\times 4
Use the distributive property to multiply x-6 by x.
x^{2}-6x=72+\left(x^{2}-36\right)\times 4
Use the distributive property to multiply x-6 by x+6 and combine like terms.
x^{2}-6x=72+4x^{2}-144
Use the distributive property to multiply x^{2}-36 by 4.
x^{2}-6x=-72+4x^{2}
Subtract 144 from 72 to get -72.
x^{2}-6x-\left(-72\right)=4x^{2}
Subtract -72 from both sides.
x^{2}-6x+72=4x^{2}
The opposite of -72 is 72.
x^{2}-6x+72-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}-6x+72=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-3\right)\times 72}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -6 for b, and 72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-3\right)\times 72}}{2\left(-3\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+12\times 72}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-6\right)±\sqrt{36+864}}{2\left(-3\right)}
Multiply 12 times 72.
x=\frac{-\left(-6\right)±\sqrt{900}}{2\left(-3\right)}
Add 36 to 864.
x=\frac{-\left(-6\right)±30}{2\left(-3\right)}
Take the square root of 900.
x=\frac{6±30}{2\left(-3\right)}
The opposite of -6 is 6.
x=\frac{6±30}{-6}
Multiply 2 times -3.
x=\frac{36}{-6}
Now solve the equation x=\frac{6±30}{-6} when ± is plus. Add 6 to 30.
x=-6
Divide 36 by -6.
x=-\frac{24}{-6}
Now solve the equation x=\frac{6±30}{-6} when ± is minus. Subtract 30 from 6.
x=4
Divide -24 by -6.
x=-6 x=4
The equation is now solved.
x=4
Variable x cannot be equal to -6.
\left(x-6\right)x=72+\left(x-6\right)\left(x+6\right)\times 4
Variable x cannot be equal to any of the values -6,6 since division by zero is not defined. Multiply both sides of the equation by \left(x-6\right)\left(x+6\right), the least common multiple of x+6,x^{2}-36.
x^{2}-6x=72+\left(x-6\right)\left(x+6\right)\times 4
Use the distributive property to multiply x-6 by x.
x^{2}-6x=72+\left(x^{2}-36\right)\times 4
Use the distributive property to multiply x-6 by x+6 and combine like terms.
x^{2}-6x=72+4x^{2}-144
Use the distributive property to multiply x^{2}-36 by 4.
x^{2}-6x=-72+4x^{2}
Subtract 144 from 72 to get -72.
x^{2}-6x-4x^{2}=-72
Subtract 4x^{2} from both sides.
-3x^{2}-6x=-72
Combine x^{2} and -4x^{2} to get -3x^{2}.
\frac{-3x^{2}-6x}{-3}=-\frac{72}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{6}{-3}\right)x=-\frac{72}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+2x=-\frac{72}{-3}
Divide -6 by -3.
x^{2}+2x=24
Divide -72 by -3.
x^{2}+2x+1^{2}=24+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=24+1
Square 1.
x^{2}+2x+1=25
Add 24 to 1.
\left(x+1\right)^{2}=25
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x+1=5 x+1=-5
Simplify.
x=4 x=-6
Subtract 1 from both sides of the equation.
x=4
Variable x cannot be equal to -6.