Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x\left(x^{2}+bx+8\right)}{\left(x+3\right)\left(x^{2}+x\right)}+\frac{3x-3}{x^{2}-1}
Divide \frac{x}{x+3} by \frac{x^{2}+x}{x^{2}+bx+8} by multiplying \frac{x}{x+3} by the reciprocal of \frac{x^{2}+x}{x^{2}+bx+8}.
\frac{x\left(x^{2}+bx+8\right)}{x\left(x+1\right)\left(x+3\right)}+\frac{3x-3}{x^{2}-1}
Factor the expressions that are not already factored in \frac{x\left(x^{2}+bx+8\right)}{\left(x+3\right)\left(x^{2}+x\right)}.
\frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)}+\frac{3x-3}{x^{2}-1}
Cancel out x in both numerator and denominator.
\frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)}+\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored in \frac{3x-3}{x^{2}-1}.
\frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)}+\frac{3}{x+1}
Cancel out x-1 in both numerator and denominator.
\frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)}+\frac{3\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+3\right) and x+1 is \left(x+1\right)\left(x+3\right). Multiply \frac{3}{x+1} times \frac{x+3}{x+3}.
\frac{x^{2}+bx+8+3\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}
Since \frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)} and \frac{3\left(x+3\right)}{\left(x+1\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+bx+8+3x+9}{\left(x+1\right)\left(x+3\right)}
Do the multiplications in x^{2}+bx+8+3\left(x+3\right).
\frac{x^{2}+bx+17+3x}{\left(x+1\right)\left(x+3\right)}
Combine like terms in x^{2}+bx+8+3x+9.
\frac{x^{2}+bx+17+3x}{x^{2}+4x+3}
Expand \left(x+1\right)\left(x+3\right).
\frac{x\left(x^{2}+bx+8\right)}{\left(x+3\right)\left(x^{2}+x\right)}+\frac{3x-3}{x^{2}-1}
Divide \frac{x}{x+3} by \frac{x^{2}+x}{x^{2}+bx+8} by multiplying \frac{x}{x+3} by the reciprocal of \frac{x^{2}+x}{x^{2}+bx+8}.
\frac{x\left(x^{2}+bx+8\right)}{x\left(x+1\right)\left(x+3\right)}+\frac{3x-3}{x^{2}-1}
Factor the expressions that are not already factored in \frac{x\left(x^{2}+bx+8\right)}{\left(x+3\right)\left(x^{2}+x\right)}.
\frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)}+\frac{3x-3}{x^{2}-1}
Cancel out x in both numerator and denominator.
\frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)}+\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored in \frac{3x-3}{x^{2}-1}.
\frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)}+\frac{3}{x+1}
Cancel out x-1 in both numerator and denominator.
\frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)}+\frac{3\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+3\right) and x+1 is \left(x+1\right)\left(x+3\right). Multiply \frac{3}{x+1} times \frac{x+3}{x+3}.
\frac{x^{2}+bx+8+3\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}
Since \frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)} and \frac{3\left(x+3\right)}{\left(x+1\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+bx+8+3x+9}{\left(x+1\right)\left(x+3\right)}
Do the multiplications in x^{2}+bx+8+3\left(x+3\right).
\frac{x^{2}+bx+17+3x}{\left(x+1\right)\left(x+3\right)}
Combine like terms in x^{2}+bx+8+3x+9.
\frac{x^{2}+bx+17+3x}{x^{2}+4x+3}
Expand \left(x+1\right)\left(x+3\right).