Evaluate
\frac{x^{2}+bx+3x+17}{\left(x+1\right)\left(x+3\right)}
Expand
\frac{x^{2}+bx+3x+17}{\left(x+1\right)\left(x+3\right)}
Graph
Share
Copied to clipboard
\frac{x\left(x^{2}+bx+8\right)}{\left(x+3\right)\left(x^{2}+x\right)}+\frac{3x-3}{x^{2}-1}
Divide \frac{x}{x+3} by \frac{x^{2}+x}{x^{2}+bx+8} by multiplying \frac{x}{x+3} by the reciprocal of \frac{x^{2}+x}{x^{2}+bx+8}.
\frac{x\left(x^{2}+bx+8\right)}{x\left(x+1\right)\left(x+3\right)}+\frac{3x-3}{x^{2}-1}
Factor the expressions that are not already factored in \frac{x\left(x^{2}+bx+8\right)}{\left(x+3\right)\left(x^{2}+x\right)}.
\frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)}+\frac{3x-3}{x^{2}-1}
Cancel out x in both numerator and denominator.
\frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)}+\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored in \frac{3x-3}{x^{2}-1}.
\frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)}+\frac{3}{x+1}
Cancel out x-1 in both numerator and denominator.
\frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)}+\frac{3\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+3\right) and x+1 is \left(x+1\right)\left(x+3\right). Multiply \frac{3}{x+1} times \frac{x+3}{x+3}.
\frac{x^{2}+bx+8+3\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}
Since \frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)} and \frac{3\left(x+3\right)}{\left(x+1\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+bx+8+3x+9}{\left(x+1\right)\left(x+3\right)}
Do the multiplications in x^{2}+bx+8+3\left(x+3\right).
\frac{x^{2}+bx+17+3x}{\left(x+1\right)\left(x+3\right)}
Combine like terms in x^{2}+bx+8+3x+9.
\frac{x^{2}+bx+17+3x}{x^{2}+4x+3}
Expand \left(x+1\right)\left(x+3\right).
\frac{x\left(x^{2}+bx+8\right)}{\left(x+3\right)\left(x^{2}+x\right)}+\frac{3x-3}{x^{2}-1}
Divide \frac{x}{x+3} by \frac{x^{2}+x}{x^{2}+bx+8} by multiplying \frac{x}{x+3} by the reciprocal of \frac{x^{2}+x}{x^{2}+bx+8}.
\frac{x\left(x^{2}+bx+8\right)}{x\left(x+1\right)\left(x+3\right)}+\frac{3x-3}{x^{2}-1}
Factor the expressions that are not already factored in \frac{x\left(x^{2}+bx+8\right)}{\left(x+3\right)\left(x^{2}+x\right)}.
\frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)}+\frac{3x-3}{x^{2}-1}
Cancel out x in both numerator and denominator.
\frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)}+\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored in \frac{3x-3}{x^{2}-1}.
\frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)}+\frac{3}{x+1}
Cancel out x-1 in both numerator and denominator.
\frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)}+\frac{3\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+3\right) and x+1 is \left(x+1\right)\left(x+3\right). Multiply \frac{3}{x+1} times \frac{x+3}{x+3}.
\frac{x^{2}+bx+8+3\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}
Since \frac{x^{2}+bx+8}{\left(x+1\right)\left(x+3\right)} and \frac{3\left(x+3\right)}{\left(x+1\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+bx+8+3x+9}{\left(x+1\right)\left(x+3\right)}
Do the multiplications in x^{2}+bx+8+3\left(x+3\right).
\frac{x^{2}+bx+17+3x}{\left(x+1\right)\left(x+3\right)}
Combine like terms in x^{2}+bx+8+3x+9.
\frac{x^{2}+bx+17+3x}{x^{2}+4x+3}
Expand \left(x+1\right)\left(x+3\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}