Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x}{-3x+2}+\frac{2-4x}{2-2x}
Combine x and -4x to get -3x.
\frac{x}{-3x+2}+\frac{2\left(-2x+1\right)}{2\left(-x+1\right)}
Factor the expressions that are not already factored in \frac{2-4x}{2-2x}.
\frac{x}{-3x+2}+\frac{-2x+1}{-x+1}
Cancel out 2 in both numerator and denominator.
\frac{x\left(-x+1\right)}{\left(-3x+2\right)\left(-x+1\right)}+\frac{\left(-2x+1\right)\left(-3x+2\right)}{\left(-3x+2\right)\left(-x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of -3x+2 and -x+1 is \left(-3x+2\right)\left(-x+1\right). Multiply \frac{x}{-3x+2} times \frac{-x+1}{-x+1}. Multiply \frac{-2x+1}{-x+1} times \frac{-3x+2}{-3x+2}.
\frac{x\left(-x+1\right)+\left(-2x+1\right)\left(-3x+2\right)}{\left(-3x+2\right)\left(-x+1\right)}
Since \frac{x\left(-x+1\right)}{\left(-3x+2\right)\left(-x+1\right)} and \frac{\left(-2x+1\right)\left(-3x+2\right)}{\left(-3x+2\right)\left(-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+x+6x^{2}-4x-3x+2}{\left(-3x+2\right)\left(-x+1\right)}
Do the multiplications in x\left(-x+1\right)+\left(-2x+1\right)\left(-3x+2\right).
\frac{5x^{2}-6x+2}{\left(-3x+2\right)\left(-x+1\right)}
Combine like terms in -x^{2}+x+6x^{2}-4x-3x+2.
\frac{5x^{2}-6x+2}{3x^{2}-5x+2}
Expand \left(-3x+2\right)\left(-x+1\right).
\frac{x}{-3x+2}+\frac{2-4x}{2-2x}
Combine x and -4x to get -3x.
\frac{x}{-3x+2}+\frac{2\left(-2x+1\right)}{2\left(-x+1\right)}
Factor the expressions that are not already factored in \frac{2-4x}{2-2x}.
\frac{x}{-3x+2}+\frac{-2x+1}{-x+1}
Cancel out 2 in both numerator and denominator.
\frac{x\left(-x+1\right)}{\left(-3x+2\right)\left(-x+1\right)}+\frac{\left(-2x+1\right)\left(-3x+2\right)}{\left(-3x+2\right)\left(-x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of -3x+2 and -x+1 is \left(-3x+2\right)\left(-x+1\right). Multiply \frac{x}{-3x+2} times \frac{-x+1}{-x+1}. Multiply \frac{-2x+1}{-x+1} times \frac{-3x+2}{-3x+2}.
\frac{x\left(-x+1\right)+\left(-2x+1\right)\left(-3x+2\right)}{\left(-3x+2\right)\left(-x+1\right)}
Since \frac{x\left(-x+1\right)}{\left(-3x+2\right)\left(-x+1\right)} and \frac{\left(-2x+1\right)\left(-3x+2\right)}{\left(-3x+2\right)\left(-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+x+6x^{2}-4x-3x+2}{\left(-3x+2\right)\left(-x+1\right)}
Do the multiplications in x\left(-x+1\right)+\left(-2x+1\right)\left(-3x+2\right).
\frac{5x^{2}-6x+2}{\left(-3x+2\right)\left(-x+1\right)}
Combine like terms in -x^{2}+x+6x^{2}-4x-3x+2.
\frac{5x^{2}-6x+2}{3x^{2}-5x+2}
Expand \left(-3x+2\right)\left(-x+1\right).