Evaluate
\frac{5x^{2}-6x+2}{\left(1-x\right)\left(2-3x\right)}
Expand
\frac{-5x^{2}+6x-2}{\left(2-3x\right)\left(x-1\right)}
Graph
Share
Copied to clipboard
\frac{x}{-3x+2}+\frac{2-4x}{2-2x}
Combine x and -4x to get -3x.
\frac{x}{-3x+2}+\frac{2\left(-2x+1\right)}{2\left(-x+1\right)}
Factor the expressions that are not already factored in \frac{2-4x}{2-2x}.
\frac{x}{-3x+2}+\frac{-2x+1}{-x+1}
Cancel out 2 in both numerator and denominator.
\frac{x\left(-x+1\right)}{\left(-3x+2\right)\left(-x+1\right)}+\frac{\left(-2x+1\right)\left(-3x+2\right)}{\left(-3x+2\right)\left(-x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of -3x+2 and -x+1 is \left(-3x+2\right)\left(-x+1\right). Multiply \frac{x}{-3x+2} times \frac{-x+1}{-x+1}. Multiply \frac{-2x+1}{-x+1} times \frac{-3x+2}{-3x+2}.
\frac{x\left(-x+1\right)+\left(-2x+1\right)\left(-3x+2\right)}{\left(-3x+2\right)\left(-x+1\right)}
Since \frac{x\left(-x+1\right)}{\left(-3x+2\right)\left(-x+1\right)} and \frac{\left(-2x+1\right)\left(-3x+2\right)}{\left(-3x+2\right)\left(-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+x+6x^{2}-4x-3x+2}{\left(-3x+2\right)\left(-x+1\right)}
Do the multiplications in x\left(-x+1\right)+\left(-2x+1\right)\left(-3x+2\right).
\frac{5x^{2}-6x+2}{\left(-3x+2\right)\left(-x+1\right)}
Combine like terms in -x^{2}+x+6x^{2}-4x-3x+2.
\frac{5x^{2}-6x+2}{3x^{2}-5x+2}
Expand \left(-3x+2\right)\left(-x+1\right).
\frac{x}{-3x+2}+\frac{2-4x}{2-2x}
Combine x and -4x to get -3x.
\frac{x}{-3x+2}+\frac{2\left(-2x+1\right)}{2\left(-x+1\right)}
Factor the expressions that are not already factored in \frac{2-4x}{2-2x}.
\frac{x}{-3x+2}+\frac{-2x+1}{-x+1}
Cancel out 2 in both numerator and denominator.
\frac{x\left(-x+1\right)}{\left(-3x+2\right)\left(-x+1\right)}+\frac{\left(-2x+1\right)\left(-3x+2\right)}{\left(-3x+2\right)\left(-x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of -3x+2 and -x+1 is \left(-3x+2\right)\left(-x+1\right). Multiply \frac{x}{-3x+2} times \frac{-x+1}{-x+1}. Multiply \frac{-2x+1}{-x+1} times \frac{-3x+2}{-3x+2}.
\frac{x\left(-x+1\right)+\left(-2x+1\right)\left(-3x+2\right)}{\left(-3x+2\right)\left(-x+1\right)}
Since \frac{x\left(-x+1\right)}{\left(-3x+2\right)\left(-x+1\right)} and \frac{\left(-2x+1\right)\left(-3x+2\right)}{\left(-3x+2\right)\left(-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+x+6x^{2}-4x-3x+2}{\left(-3x+2\right)\left(-x+1\right)}
Do the multiplications in x\left(-x+1\right)+\left(-2x+1\right)\left(-3x+2\right).
\frac{5x^{2}-6x+2}{\left(-3x+2\right)\left(-x+1\right)}
Combine like terms in -x^{2}+x+6x^{2}-4x-3x+2.
\frac{5x^{2}-6x+2}{3x^{2}-5x+2}
Expand \left(-3x+2\right)\left(-x+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}