Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(5x+3\right)x=\left(x+1\right)\times 2x+\left(x+1\right)\left(5x+3\right)
Variable x cannot be equal to any of the values -1,-\frac{3}{5} since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)\left(5x+3\right), the least common multiple of x+1,5x+3.
5x^{2}+3x=\left(x+1\right)\times 2x+\left(x+1\right)\left(5x+3\right)
Use the distributive property to multiply 5x+3 by x.
5x^{2}+3x=\left(2x+2\right)x+\left(x+1\right)\left(5x+3\right)
Use the distributive property to multiply x+1 by 2.
5x^{2}+3x=2x^{2}+2x+\left(x+1\right)\left(5x+3\right)
Use the distributive property to multiply 2x+2 by x.
5x^{2}+3x=2x^{2}+2x+5x^{2}+8x+3
Use the distributive property to multiply x+1 by 5x+3 and combine like terms.
5x^{2}+3x=7x^{2}+2x+8x+3
Combine 2x^{2} and 5x^{2} to get 7x^{2}.
5x^{2}+3x=7x^{2}+10x+3
Combine 2x and 8x to get 10x.
5x^{2}+3x-7x^{2}=10x+3
Subtract 7x^{2} from both sides.
-2x^{2}+3x=10x+3
Combine 5x^{2} and -7x^{2} to get -2x^{2}.
-2x^{2}+3x-10x=3
Subtract 10x from both sides.
-2x^{2}-7x=3
Combine 3x and -10x to get -7x.
-2x^{2}-7x-3=0
Subtract 3 from both sides.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -7 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49+8\left(-3\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-7\right)±\sqrt{49-24}}{2\left(-2\right)}
Multiply 8 times -3.
x=\frac{-\left(-7\right)±\sqrt{25}}{2\left(-2\right)}
Add 49 to -24.
x=\frac{-\left(-7\right)±5}{2\left(-2\right)}
Take the square root of 25.
x=\frac{7±5}{2\left(-2\right)}
The opposite of -7 is 7.
x=\frac{7±5}{-4}
Multiply 2 times -2.
x=\frac{12}{-4}
Now solve the equation x=\frac{7±5}{-4} when ± is plus. Add 7 to 5.
x=-3
Divide 12 by -4.
x=\frac{2}{-4}
Now solve the equation x=\frac{7±5}{-4} when ± is minus. Subtract 5 from 7.
x=-\frac{1}{2}
Reduce the fraction \frac{2}{-4} to lowest terms by extracting and canceling out 2.
x=-3 x=-\frac{1}{2}
The equation is now solved.
\left(5x+3\right)x=\left(x+1\right)\times 2x+\left(x+1\right)\left(5x+3\right)
Variable x cannot be equal to any of the values -1,-\frac{3}{5} since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)\left(5x+3\right), the least common multiple of x+1,5x+3.
5x^{2}+3x=\left(x+1\right)\times 2x+\left(x+1\right)\left(5x+3\right)
Use the distributive property to multiply 5x+3 by x.
5x^{2}+3x=\left(2x+2\right)x+\left(x+1\right)\left(5x+3\right)
Use the distributive property to multiply x+1 by 2.
5x^{2}+3x=2x^{2}+2x+\left(x+1\right)\left(5x+3\right)
Use the distributive property to multiply 2x+2 by x.
5x^{2}+3x=2x^{2}+2x+5x^{2}+8x+3
Use the distributive property to multiply x+1 by 5x+3 and combine like terms.
5x^{2}+3x=7x^{2}+2x+8x+3
Combine 2x^{2} and 5x^{2} to get 7x^{2}.
5x^{2}+3x=7x^{2}+10x+3
Combine 2x and 8x to get 10x.
5x^{2}+3x-7x^{2}=10x+3
Subtract 7x^{2} from both sides.
-2x^{2}+3x=10x+3
Combine 5x^{2} and -7x^{2} to get -2x^{2}.
-2x^{2}+3x-10x=3
Subtract 10x from both sides.
-2x^{2}-7x=3
Combine 3x and -10x to get -7x.
\frac{-2x^{2}-7x}{-2}=\frac{3}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{7}{-2}\right)x=\frac{3}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{7}{2}x=\frac{3}{-2}
Divide -7 by -2.
x^{2}+\frac{7}{2}x=-\frac{3}{2}
Divide 3 by -2.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-\frac{3}{2}+\left(\frac{7}{4}\right)^{2}
Divide \frac{7}{2}, the coefficient of the x term, by 2 to get \frac{7}{4}. Then add the square of \frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-\frac{3}{2}+\frac{49}{16}
Square \frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{25}{16}
Add -\frac{3}{2} to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{4}\right)^{2}=\frac{25}{16}
Factor x^{2}+\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Take the square root of both sides of the equation.
x+\frac{7}{4}=\frac{5}{4} x+\frac{7}{4}=-\frac{5}{4}
Simplify.
x=-\frac{1}{2} x=-3
Subtract \frac{7}{4} from both sides of the equation.