Solve for k (complex solution)
\left\{\begin{matrix}k=x\text{, }&x\neq 1\text{ and }x\neq 0\\k\in \mathrm{C}\setminus 1,0\text{, }&x=-1\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=x\text{, }&x\neq 1\text{ and }x\neq 0\\k\in \mathrm{R}\setminus 1,0\text{, }&x=-1\end{matrix}\right.
Solve for x
x=k
x=-1\text{, }k\neq 1\text{ and }k\neq 0
Graph
Share
Copied to clipboard
\left(k-1\right)x=x^{2}-1-\left(k-1\right)
Variable k cannot be equal to any of the values 0,1 since division by zero is not defined. Multiply both sides of the equation by k\left(k-1\right), the least common multiple of k,k^{2}-k.
kx-x=x^{2}-1-\left(k-1\right)
Use the distributive property to multiply k-1 by x.
kx-x=x^{2}-1-k+1
To find the opposite of k-1, find the opposite of each term.
kx-x=x^{2}-k
Add -1 and 1 to get 0.
kx-x+k=x^{2}
Add k to both sides.
kx+k=x^{2}+x
Add x to both sides.
\left(x+1\right)k=x^{2}+x
Combine all terms containing k.
\frac{\left(x+1\right)k}{x+1}=\frac{x\left(x+1\right)}{x+1}
Divide both sides by 1+x.
k=\frac{x\left(x+1\right)}{x+1}
Dividing by 1+x undoes the multiplication by 1+x.
k=x
Divide x\left(1+x\right) by 1+x.
k=x\text{, }k\neq 1\text{ and }k\neq 0
Variable k cannot be equal to any of the values 1,0.
\left(k-1\right)x=x^{2}-1-\left(k-1\right)
Variable k cannot be equal to any of the values 0,1 since division by zero is not defined. Multiply both sides of the equation by k\left(k-1\right), the least common multiple of k,k^{2}-k.
kx-x=x^{2}-1-\left(k-1\right)
Use the distributive property to multiply k-1 by x.
kx-x=x^{2}-1-k+1
To find the opposite of k-1, find the opposite of each term.
kx-x=x^{2}-k
Add -1 and 1 to get 0.
kx-x+k=x^{2}
Add k to both sides.
kx+k=x^{2}+x
Add x to both sides.
\left(x+1\right)k=x^{2}+x
Combine all terms containing k.
\frac{\left(x+1\right)k}{x+1}=\frac{x\left(x+1\right)}{x+1}
Divide both sides by 1+x.
k=\frac{x\left(x+1\right)}{x+1}
Dividing by 1+x undoes the multiplication by 1+x.
k=x
Divide x\left(1+x\right) by 1+x.
k=x\text{, }k\neq 1\text{ and }k\neq 0
Variable k cannot be equal to any of the values 1,0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}