Solve for x
x=-\frac{3\left(1-c\right)}{1+c-c^{2}}
c\neq \frac{\sqrt{5}+1}{2}\text{ and }c\neq \frac{1-\sqrt{5}}{2}\text{ and }c\neq 1
Solve for c
c=-\frac{\sqrt{5x^{2}+6x+9}-x+3}{2x}
c=-\frac{-\sqrt{5x^{2}+6x+9}-x+3}{2x}\text{, }x\neq 0
Graph
Share
Copied to clipboard
x=cx\left(c-1\right)+\left(c-1\right)\times 3
Multiply both sides of the equation by c-1.
x=xc^{2}-cx+\left(c-1\right)\times 3
Use the distributive property to multiply cx by c-1.
x=xc^{2}-cx+3c-3
Use the distributive property to multiply c-1 by 3.
x-xc^{2}=-cx+3c-3
Subtract xc^{2} from both sides.
x-xc^{2}+cx=3c-3
Add cx to both sides.
cx-xc^{2}+x=3c-3
Reorder the terms.
\left(c-c^{2}+1\right)x=3c-3
Combine all terms containing x.
\left(1+c-c^{2}\right)x=3c-3
The equation is in standard form.
\frac{\left(1+c-c^{2}\right)x}{1+c-c^{2}}=\frac{3c-3}{1+c-c^{2}}
Divide both sides by 1-c^{2}+c.
x=\frac{3c-3}{1+c-c^{2}}
Dividing by 1-c^{2}+c undoes the multiplication by 1-c^{2}+c.
x=\frac{3\left(c-1\right)}{1+c-c^{2}}
Divide -3+3c by 1-c^{2}+c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}