Solve for b
\left\{\begin{matrix}b=\frac{x}{c+2}\text{, }&x\neq 0\text{ and }c\neq -2\\b\neq 0\text{, }&c=-2\text{ and }x=0\end{matrix}\right.
Solve for c
c=\frac{x}{b}-2
b\neq 0
Graph
Share
Copied to clipboard
x+b\left(-2\right)=cb
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b.
x+b\left(-2\right)-cb=0
Subtract cb from both sides.
b\left(-2\right)-cb=-x
Subtract x from both sides. Anything subtracted from zero gives its negation.
\left(-2-c\right)b=-x
Combine all terms containing b.
\left(-c-2\right)b=-x
The equation is in standard form.
\frac{\left(-c-2\right)b}{-c-2}=-\frac{x}{-c-2}
Divide both sides by -2-c.
b=-\frac{x}{-c-2}
Dividing by -2-c undoes the multiplication by -2-c.
b=\frac{x}{c+2}
Divide -x by -2-c.
b=\frac{x}{c+2}\text{, }b\neq 0
Variable b cannot be equal to 0.
x+b\left(-2\right)=cb
Multiply both sides of the equation by b.
cb=x+b\left(-2\right)
Swap sides so that all variable terms are on the left hand side.
bc=x-2b
The equation is in standard form.
\frac{bc}{b}=\frac{x-2b}{b}
Divide both sides by b.
c=\frac{x-2b}{b}
Dividing by b undoes the multiplication by b.
c=\frac{x}{b}-2
Divide x-2b by b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}