Solve for a
\left\{\begin{matrix}a=-\frac{x}{b-c}\text{, }&x\neq 0\text{ and }b\neq c\\a\neq 0\text{, }&b=c\text{ and }x=0\end{matrix}\right.
Solve for b
b=c-\frac{x}{a}
a\neq 0
Graph
Share
Copied to clipboard
x+ab=ca
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
x+ab-ca=0
Subtract ca from both sides.
ab-ca=-x
Subtract x from both sides. Anything subtracted from zero gives its negation.
\left(b-c\right)a=-x
Combine all terms containing a.
\frac{\left(b-c\right)a}{b-c}=-\frac{x}{b-c}
Divide both sides by b-c.
a=-\frac{x}{b-c}
Dividing by b-c undoes the multiplication by b-c.
a=-\frac{x}{b-c}\text{, }a\neq 0
Variable a cannot be equal to 0.
x+ab=ca
Multiply both sides of the equation by a.
ab=ca-x
Subtract x from both sides.
ab=ac-x
The equation is in standard form.
\frac{ab}{a}=\frac{ac-x}{a}
Divide both sides by a.
b=\frac{ac-x}{a}
Dividing by a undoes the multiplication by a.
b=c-\frac{x}{a}
Divide ca-x by a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}