Solve for x
x=36-\frac{774}{y}
y\neq 0
Solve for y
y=-\frac{774}{x-36}
x\neq 36
Graph
Share
Copied to clipboard
yx+9\times 86=36y
Multiply both sides of the equation by 9y, the least common multiple of 9,y.
yx+774=36y
Multiply 9 and 86 to get 774.
yx=36y-774
Subtract 774 from both sides.
\frac{yx}{y}=\frac{36y-774}{y}
Divide both sides by y.
x=\frac{36y-774}{y}
Dividing by y undoes the multiplication by y.
x=36-\frac{774}{y}
Divide 36y-774 by y.
yx+9\times 86=36y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 9y, the least common multiple of 9,y.
yx+774=36y
Multiply 9 and 86 to get 774.
yx+774-36y=0
Subtract 36y from both sides.
yx-36y=-774
Subtract 774 from both sides. Anything subtracted from zero gives its negation.
\left(x-36\right)y=-774
Combine all terms containing y.
\frac{\left(x-36\right)y}{x-36}=-\frac{774}{x-36}
Divide both sides by -36+x.
y=-\frac{774}{x-36}
Dividing by -36+x undoes the multiplication by -36+x.
y=-\frac{774}{x-36}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}