Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x+1680\left(\frac{1-x}{160}+\frac{1-x}{30}\right)\leq 30720
Multiply both sides of the equation by 480, the least common multiple of 60,160,30. Since 480 is positive, the inequality direction remains the same.
8x+1680\times \frac{19}{480}\left(1-x\right)\leq 30720
Combine \frac{1-x}{160} and \frac{1-x}{30} to get \frac{19}{480}\left(1-x\right).
8x+1680\left(\frac{19}{480}+\frac{19}{480}\left(-1\right)x\right)\leq 30720
Use the distributive property to multiply \frac{19}{480} by 1-x.
8x+1680\left(\frac{19}{480}-\frac{19}{480}x\right)\leq 30720
Multiply \frac{19}{480} and -1 to get -\frac{19}{480}.
8x+1680\times \frac{19}{480}+1680\left(-\frac{19}{480}\right)x\leq 30720
Use the distributive property to multiply 1680 by \frac{19}{480}-\frac{19}{480}x.
8x+\frac{1680\times 19}{480}+1680\left(-\frac{19}{480}\right)x\leq 30720
Express 1680\times \frac{19}{480} as a single fraction.
8x+\frac{31920}{480}+1680\left(-\frac{19}{480}\right)x\leq 30720
Multiply 1680 and 19 to get 31920.
8x+\frac{133}{2}+1680\left(-\frac{19}{480}\right)x\leq 30720
Reduce the fraction \frac{31920}{480} to lowest terms by extracting and canceling out 240.
8x+\frac{133}{2}+\frac{1680\left(-19\right)}{480}x\leq 30720
Express 1680\left(-\frac{19}{480}\right) as a single fraction.
8x+\frac{133}{2}+\frac{-31920}{480}x\leq 30720
Multiply 1680 and -19 to get -31920.
8x+\frac{133}{2}-\frac{133}{2}x\leq 30720
Reduce the fraction \frac{-31920}{480} to lowest terms by extracting and canceling out 240.
-\frac{117}{2}x+\frac{133}{2}\leq 30720
Combine 8x and -\frac{133}{2}x to get -\frac{117}{2}x.
-\frac{117}{2}x\leq 30720-\frac{133}{2}
Subtract \frac{133}{2} from both sides.
-\frac{117}{2}x\leq \frac{61440}{2}-\frac{133}{2}
Convert 30720 to fraction \frac{61440}{2}.
-\frac{117}{2}x\leq \frac{61440-133}{2}
Since \frac{61440}{2} and \frac{133}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{117}{2}x\leq \frac{61307}{2}
Subtract 133 from 61440 to get 61307.
x\geq \frac{61307}{2}\left(-\frac{2}{117}\right)
Multiply both sides by -\frac{2}{117}, the reciprocal of -\frac{117}{2}. Since -\frac{117}{2} is negative, the inequality direction is changed.
x\geq \frac{61307\left(-2\right)}{2\times 117}
Multiply \frac{61307}{2} times -\frac{2}{117} by multiplying numerator times numerator and denominator times denominator.
x\geq \frac{-122614}{234}
Do the multiplications in the fraction \frac{61307\left(-2\right)}{2\times 117}.
x\geq -\frac{61307}{117}
Reduce the fraction \frac{-122614}{234} to lowest terms by extracting and canceling out 2.