Solve for x
x = \frac{35}{8} = 4\frac{3}{8} = 4.375
Graph
Share
Copied to clipboard
3x-9\left(x-1\right)=2\left(x-13\right)
Multiply both sides of the equation by 18, the least common multiple of 6,2,9.
3x-9x+9=2\left(x-13\right)
Use the distributive property to multiply -9 by x-1.
-6x+9=2\left(x-13\right)
Combine 3x and -9x to get -6x.
-6x+9=2x-26
Use the distributive property to multiply 2 by x-13.
-6x+9-2x=-26
Subtract 2x from both sides.
-8x+9=-26
Combine -6x and -2x to get -8x.
-8x=-26-9
Subtract 9 from both sides.
-8x=-35
Subtract 9 from -26 to get -35.
x=\frac{-35}{-8}
Divide both sides by -8.
x=\frac{35}{8}
Fraction \frac{-35}{-8} can be simplified to \frac{35}{8} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}