Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

xx=3\times 6+3x\left(-1\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x, the least common multiple of 3,x.
x^{2}=3\times 6+3x\left(-1\right)
Multiply x and x to get x^{2}.
x^{2}=18+3x\left(-1\right)
Multiply 3 and 6 to get 18.
x^{2}=18-3x
Multiply 3 and -1 to get -3.
x^{2}-18=-3x
Subtract 18 from both sides.
x^{2}-18+3x=0
Add 3x to both sides.
x^{2}+3x-18=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-18\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-18\right)}}{2}
Square 3.
x=\frac{-3±\sqrt{9+72}}{2}
Multiply -4 times -18.
x=\frac{-3±\sqrt{81}}{2}
Add 9 to 72.
x=\frac{-3±9}{2}
Take the square root of 81.
x=\frac{6}{2}
Now solve the equation x=\frac{-3±9}{2} when ± is plus. Add -3 to 9.
x=3
Divide 6 by 2.
x=-\frac{12}{2}
Now solve the equation x=\frac{-3±9}{2} when ± is minus. Subtract 9 from -3.
x=-6
Divide -12 by 2.
x=3 x=-6
The equation is now solved.
xx=3\times 6+3x\left(-1\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x, the least common multiple of 3,x.
x^{2}=3\times 6+3x\left(-1\right)
Multiply x and x to get x^{2}.
x^{2}=18+3x\left(-1\right)
Multiply 3 and 6 to get 18.
x^{2}=18-3x
Multiply 3 and -1 to get -3.
x^{2}+3x=18
Add 3x to both sides.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=18+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=18+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{81}{4}
Add 18 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{81}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{9}{2} x+\frac{3}{2}=-\frac{9}{2}
Simplify.
x=3 x=-6
Subtract \frac{3}{2} from both sides of the equation.