Solve for n
\left\{\begin{matrix}n=-\frac{3y}{x-3}\text{, }&y\neq 0\text{ and }x\neq 3\\n\neq 0\text{, }&x=3\text{ and }y=0\end{matrix}\right.
Solve for x
x=-\frac{3y}{n}+3
n\neq 0
Graph
Share
Copied to clipboard
nx+3y=3n
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3n, the least common multiple of 3,n.
nx+3y-3n=0
Subtract 3n from both sides.
nx-3n=-3y
Subtract 3y from both sides. Anything subtracted from zero gives its negation.
\left(x-3\right)n=-3y
Combine all terms containing n.
\frac{\left(x-3\right)n}{x-3}=-\frac{3y}{x-3}
Divide both sides by x-3.
n=-\frac{3y}{x-3}
Dividing by x-3 undoes the multiplication by x-3.
n=-\frac{3y}{x-3}\text{, }n\neq 0
Variable n cannot be equal to 0.
nx+3y=3n
Multiply both sides of the equation by 3n, the least common multiple of 3,n.
nx=3n-3y
Subtract 3y from both sides.
\frac{nx}{n}=\frac{3n-3y}{n}
Divide both sides by n.
x=\frac{3n-3y}{n}
Dividing by n undoes the multiplication by n.
x=-\frac{3y}{n}+3
Divide 3n-3y by n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}