Solve for x
x=\frac{1}{3}\approx 0.333333333
x=27
Graph
Share
Copied to clipboard
3xx+9\times 3=x\left(9\times 9+1\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 9x, the least common multiple of 3,x,9.
3x^{2}+9\times 3=x\left(9\times 9+1\right)
Multiply x and x to get x^{2}.
3x^{2}+27=x\left(9\times 9+1\right)
Multiply 9 and 3 to get 27.
3x^{2}+27=x\left(81+1\right)
Multiply 9 and 9 to get 81.
3x^{2}+27=x\times 82
Add 81 and 1 to get 82.
3x^{2}+27-x\times 82=0
Subtract x\times 82 from both sides.
3x^{2}+27-82x=0
Multiply -1 and 82 to get -82.
3x^{2}-82x+27=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-82 ab=3\times 27=81
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+27. To find a and b, set up a system to be solved.
-1,-81 -3,-27 -9,-9
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 81.
-1-81=-82 -3-27=-30 -9-9=-18
Calculate the sum for each pair.
a=-81 b=-1
The solution is the pair that gives sum -82.
\left(3x^{2}-81x\right)+\left(-x+27\right)
Rewrite 3x^{2}-82x+27 as \left(3x^{2}-81x\right)+\left(-x+27\right).
3x\left(x-27\right)-\left(x-27\right)
Factor out 3x in the first and -1 in the second group.
\left(x-27\right)\left(3x-1\right)
Factor out common term x-27 by using distributive property.
x=27 x=\frac{1}{3}
To find equation solutions, solve x-27=0 and 3x-1=0.
3xx+9\times 3=x\left(9\times 9+1\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 9x, the least common multiple of 3,x,9.
3x^{2}+9\times 3=x\left(9\times 9+1\right)
Multiply x and x to get x^{2}.
3x^{2}+27=x\left(9\times 9+1\right)
Multiply 9 and 3 to get 27.
3x^{2}+27=x\left(81+1\right)
Multiply 9 and 9 to get 81.
3x^{2}+27=x\times 82
Add 81 and 1 to get 82.
3x^{2}+27-x\times 82=0
Subtract x\times 82 from both sides.
3x^{2}+27-82x=0
Multiply -1 and 82 to get -82.
3x^{2}-82x+27=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-82\right)±\sqrt{\left(-82\right)^{2}-4\times 3\times 27}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -82 for b, and 27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-82\right)±\sqrt{6724-4\times 3\times 27}}{2\times 3}
Square -82.
x=\frac{-\left(-82\right)±\sqrt{6724-12\times 27}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-82\right)±\sqrt{6724-324}}{2\times 3}
Multiply -12 times 27.
x=\frac{-\left(-82\right)±\sqrt{6400}}{2\times 3}
Add 6724 to -324.
x=\frac{-\left(-82\right)±80}{2\times 3}
Take the square root of 6400.
x=\frac{82±80}{2\times 3}
The opposite of -82 is 82.
x=\frac{82±80}{6}
Multiply 2 times 3.
x=\frac{162}{6}
Now solve the equation x=\frac{82±80}{6} when ± is plus. Add 82 to 80.
x=27
Divide 162 by 6.
x=\frac{2}{6}
Now solve the equation x=\frac{82±80}{6} when ± is minus. Subtract 80 from 82.
x=\frac{1}{3}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
x=27 x=\frac{1}{3}
The equation is now solved.
3xx+9\times 3=x\left(9\times 9+1\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 9x, the least common multiple of 3,x,9.
3x^{2}+9\times 3=x\left(9\times 9+1\right)
Multiply x and x to get x^{2}.
3x^{2}+27=x\left(9\times 9+1\right)
Multiply 9 and 3 to get 27.
3x^{2}+27=x\left(81+1\right)
Multiply 9 and 9 to get 81.
3x^{2}+27=x\times 82
Add 81 and 1 to get 82.
3x^{2}+27-x\times 82=0
Subtract x\times 82 from both sides.
3x^{2}+27-82x=0
Multiply -1 and 82 to get -82.
3x^{2}-82x=-27
Subtract 27 from both sides. Anything subtracted from zero gives its negation.
\frac{3x^{2}-82x}{3}=-\frac{27}{3}
Divide both sides by 3.
x^{2}-\frac{82}{3}x=-\frac{27}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{82}{3}x=-9
Divide -27 by 3.
x^{2}-\frac{82}{3}x+\left(-\frac{41}{3}\right)^{2}=-9+\left(-\frac{41}{3}\right)^{2}
Divide -\frac{82}{3}, the coefficient of the x term, by 2 to get -\frac{41}{3}. Then add the square of -\frac{41}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{82}{3}x+\frac{1681}{9}=-9+\frac{1681}{9}
Square -\frac{41}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{82}{3}x+\frac{1681}{9}=\frac{1600}{9}
Add -9 to \frac{1681}{9}.
\left(x-\frac{41}{3}\right)^{2}=\frac{1600}{9}
Factor x^{2}-\frac{82}{3}x+\frac{1681}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{41}{3}\right)^{2}}=\sqrt{\frac{1600}{9}}
Take the square root of both sides of the equation.
x-\frac{41}{3}=\frac{40}{3} x-\frac{41}{3}=-\frac{40}{3}
Simplify.
x=27 x=\frac{1}{3}
Add \frac{41}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}