Solve for x
x = \frac{184}{11} = 16\frac{8}{11} \approx 16.727272727
Graph
Share
Copied to clipboard
x=2.3\left(-x+24\right)
Variable x cannot be equal to 24 since division by zero is not defined. Multiply both sides of the equation by -x+24.
x=-2.3x+55.2
Use the distributive property to multiply 2.3 by -x+24.
x+2.3x=55.2
Add 2.3x to both sides.
3.3x=55.2
Combine x and 2.3x to get 3.3x.
x=\frac{55.2}{3.3}
Divide both sides by 3.3.
x=\frac{552}{33}
Expand \frac{55.2}{3.3} by multiplying both numerator and the denominator by 10.
x=\frac{184}{11}
Reduce the fraction \frac{552}{33} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}