Solve for x
x = \frac{400}{7} = 57\frac{1}{7} \approx 57.142857143
Graph
Share
Copied to clipboard
x=\frac{50}{43}\left(x-8\right)
Multiply both sides of the equation by 200.
x=\frac{50}{43}x+\frac{50}{43}\left(-8\right)
Use the distributive property to multiply \frac{50}{43} by x-8.
x=\frac{50}{43}x+\frac{50\left(-8\right)}{43}
Express \frac{50}{43}\left(-8\right) as a single fraction.
x=\frac{50}{43}x+\frac{-400}{43}
Multiply 50 and -8 to get -400.
x=\frac{50}{43}x-\frac{400}{43}
Fraction \frac{-400}{43} can be rewritten as -\frac{400}{43} by extracting the negative sign.
x-\frac{50}{43}x=-\frac{400}{43}
Subtract \frac{50}{43}x from both sides.
-\frac{7}{43}x=-\frac{400}{43}
Combine x and -\frac{50}{43}x to get -\frac{7}{43}x.
x=-\frac{400}{43}\left(-\frac{43}{7}\right)
Multiply both sides by -\frac{43}{7}, the reciprocal of -\frac{7}{43}.
x=\frac{-400\left(-43\right)}{43\times 7}
Multiply -\frac{400}{43} times -\frac{43}{7} by multiplying numerator times numerator and denominator times denominator.
x=\frac{17200}{301}
Do the multiplications in the fraction \frac{-400\left(-43\right)}{43\times 7}.
x=\frac{400}{7}
Reduce the fraction \frac{17200}{301} to lowest terms by extracting and canceling out 43.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}